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Comparing the Performance Potentials of
Interval and General Type-2 Rule-Based Fuzzy
Systems in Terms of Sculpting the State Space

Jerry M. Mendel , Life Fellow, IEEE

Abstract—This paper provides application-independent per-
spectives on why improved performance usually occurs as one goes
from an interval type-2 (IT2) fuzzy system to a general type-2
(GT2) fuzzy system. This is achieved by using the horizontal-slice
representation of a GT2 fuzzy set and GT2 fuzzy system and by
examining first- and second-order rule partitions as well as novelty
partitions for the horizontal slices. It demonstrates that, for trian-
gle and trapezoid secondary membership functions, the numbers
of first- and second-order rule partitions are exactly the same for
IT2 and GT2 fuzzy systems, but that a maximum amount of change
always occurs in every second-order rule partition of a GT2 fuzzy
system. This does not always occur in such partitions of an IT2
fuzzy system. Furthermore, when type reduction (TR) is used in a
GT2 fuzzy system, the total number of novelty partitions is directly
proportional to the number of horizontal slices; consequently, there
are many more such partitions in a GT2 fuzzy system that uses TR
than occur in an IT2 fuzzy system that also uses TR. It is the au-
thor’s conjecture that it is the maximum changes that occur in
every second-order rule partition, as well as the greater number
of novelty partitions when TR is used, that provide a GT2 fuzzy
system with the potential to outperform an IT2 fuzzy system.

Index Terms—General type-2 (GT2) fuzzy sets (FSs)/systems,
horizontal slices, interval type-2 (IT2) fuzzy sets/systems, novelty
partitions, rule-partitions, type reduction (TR).

I. INTRODUCTION

IN [32], it is stated that thousands of articles (including books)
have been published about rule-based fuzzy systems (hence-

forth referred to as fuzzy systems), and “invariably they demon-
strate that better performance [as measured by an application’s
performance metric(s)] is achieved by: (1) a type-1 (T1) fuzzy
system over a nonfuzzy system, (2) an interval type-2 (IT2)
fuzzy system over a T1 fuzzy system, and (3) a general type-2
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(GT2) fuzzy system over an IT2 fuzzy system.” That paper then
raised the following crucial question: “Why does improved per-
formance occur as one goes from crisp to T1, to IT2, to GT2
fuzzy systems?” It then went on to provide new and novel an-
swers to this crucial question, outside of the context of a specific
application (and so it represents a common component to all per-
formance analyses), but only for T1 and IT2 fuzzy systems. The
present paper extends the author’s results in [32] to GT2 fuzzy
systems, and, for the first time, lets one explain the performance
potentials for T1, IT2, and GT2 fuzzy systems, outside of the
context of a specific application.

To remind the reader, in [32], it was shown that: “ . . . a T1
fuzzy system can sculpt its state space with greater variability
than a crisp rule-based system can, and in ways that cannot be
accomplished by the crisp system, and that an IT2 fuzzy system
(that has the same number of rules as the T1 fuzzy system) can
sculpt the state space with even greater variability, and in ways
that cannot be accomplished by a T1 fuzzy system.”

“Sculpting the state space” was quantified in [32] in terms of
four kinds of partitions (see Appendix A for formal definitions).

1) Uncertainty partitions that let T1 fuzzy sets (FSs) be dis-
tinguished from crisps sets, IT2 FSs be distinguished from
T1 FSs, and GT2 FSs be distinguished from IT2 FSs.

2) First-order rule partitions (each rule has p antecedents)
that provide a course sculpting of X1 × · · · × Xp into
hyper-rectangles each of which contains the same number
of the same fired rules.

3) Second-order rule partitions that provide a finer sculpt-
ing of X1 × · · · × Xp when membership functions (MFs)
change their mathematical formulae (slopes) within a first-
order rule partition.

4) Novelty partitions that further sculpt X1 × · · · × Xp in a
novel but different way, when type reduction (TR) is used
in an IT2 fuzzy system.

This paper re-examines both kinds of rule partitions and nov-
elty partitions for GT2 fuzzy systems and, for the first time,
shows that they can sculpt the state space with even greater
variability than can an IT2 fuzzy system, and in ways that can-
not be achieved by an IT2 fuzzy system.

Table VII summarizes everything that has been learned about
crisp, T1, IT2, and GT2 fuzzy systems (herein and in [32])
in terms of first- and second-order rule partitions and novelty
partitions; it provides the reader with the “big picture” and will
help them communicate to others why the potential for improved
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Fig. 1. Secondary set named Ã(x′), its triangular MF and α− cut raised to
level α. Observe that μÃ (x ′) (u) is anchored to FOU(Ã) at μ

Ã
(x′) and μ̄Ã (x′)

(see [31]).

performance exists as one goes from crisp to T1, to IT2, and then
to GT2 fuzzy systems.

II. BACKGROUND

A. General T2 Fuzzy Sets

As noted in [30, footnote 2]:

In the early days of T2 fuzzy sets and systems, the phrases ‘T2 FS’
or ‘T2 fuzzy system’ were used in an all-inclusive way, meaning any
kind of T2 FS or system. During the past 15 years [now more than 18
years] most of the attention has been given to IT2 FSs and systems.
It is only within the past five [now more than eight] years or so that
there has been a return to more general T2 FSs and systems, and, to
distinguish them from the more specialized IT2 FSs and systems, the
term ‘general’ is being used. In essence, T2 FSs and systems now
consist of the union of interval and general T2 FSs and systems.

Because GT2 FSs are now en vogue (e.g., [2]–[20], [22]–[26],
[29]–[31], [33], [35], [39]–[46], [49], [50], [52]–[55]), and many
readers will not be as familiar with them as they are with IT2
FSs, they are summarized in Appendix B. It is very important for
the reader to read that appendix, because many of its concepts
are used below.

Due to space limitations, only parsimonious1 triangle sec-
ondary MFs (see Fig. 1) are considered in this paper, but it is
straightforward to obtain the same or very similar results for
other piecewise-linear secondary MFs such as trapezoids.2 For
triangle secondary MFs (w ∈ [0, 1], α ∈ [0, 1])

⎧
⎪⎪⎨

⎪⎪⎩

Ã(x)α = [aα (x), bα (x)]

aα (x) = μ
Ã
(x) + w[μ̄Ã (x) − μ

Ã
(x)]α

bα (x) = μ̄Ã (x) − (1 − w)[μ̄Ã (x) − μ
Ã
(x)]α

(1)

1[31, p. 272]A MF of a T2 FS is said to be parsimonious when it is described
by a small number of parameters. Parsimonious models have a very long history
in the field of mathematical modeling, e.g., in system identification (e.g., [27]),
one always tries to use a model with the fewest number of parameters to fit data.
Because a T2 FS is a mathematical model, this author believes that parsimony
should be adhered to for such models.

2Formulas for parsimonious symmetrical and nonsymmetrical trapezoid sec-
ondary MFs can be found in [31, p. 297].

Fig. 2. Fuzzy system that is valid for IT2 and GT2 FSs (see [32]).

Apex(u|x) = μ
Ã
(x) + w[μ̄Ã (x) − μ

Ã
(x)] (2)

bα (x) − aα (x) = [μ̄Ã (x) − μ
Ã
(x)](1 − α). (3)

Parameter w in (2) lets (1) include a wide range of triangle
MFs, e.g., when w = 0 (or 1), the secondary MF is a right
triangle that is perpendicular to μ

Ã
(x) (or μ̄Ã (x)), and when

w = 0.5, the secondary MF is an isosceles triangle. The length
of the α−cut in (3) depends only on α and not on w. For
a trapezoid secondary MF, bα (x) − aα (x) depends on both α
and w.

Definition 1: The points at which the LMF, UMF, or sec-
ondary MF change its mathematical formula (slope) within the
support of the footprint of uncertainty (FOU) are called MF
kinks.

Example 1: For the FOU in Fig. 1, whose support is [c, g] ×
[0, 1], the UMF has two MF kinks (a, b) and the LMF has three
MF kinks (d, e,f ). The triangle secondary MF has a kink at its
apex.

Because a secondary MF is a T1 FS, it can be represented
using its α− cuts, as sup

α∈[0,1]
[α/Ã(x)α ], where Ã(x)α is given in

(B-17) (also, the top line of (1)). By connecting the α− cuts for
x ∈ X , one obtains an α-plane for Ã, Ãα . When Ãα is raised to
level-α and the (fuzzy) union is taken with respect to α ∈ [0, 1],
one obtains the horizontal-slice representation of Ã that is given
in (B-23). It is this representation that is used in our study of
sculpting the state space for GT2 fuzzy systems.

B. GT2 Rule-Based Fuzzy Systems

For completeness, some of the background that is in [32,
Sec. II] is repeated here, but in the context of GT2 fuzzy systems.
A rule-based GT2 fuzzy system (fuzzy system, for short) contains
four components—rules, fuzzifier, inference (engine), and out-
put processor—that are interconnected, as shown in Fig. 2. Once
the rules have been established, the GT2 fuzzy system can again
be viewed as a mapping from inputs to outputs, and this mapping
can be expressed quantitatively as y = f(x).

Because there are different ways to represent a GT2 FS (e.g.,
vertical-slice, wavy-slice, and horizontal-slice), there can be
different ways to represent and implement a GT2 fuzzy sys-
tem. To-date, only a horizontal-slice implementation has been
developed, primarily because its calculations make use of the
already well-understood calculations for an IT2 fuzzy system,
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Fig. 3. WH GT2 fuzzy system is the aggregation of horizontal-slice IT2 fuzzy
systems (see [31]).

and those calculations are used on each horizontal slice, as a
result of the following fact ([53], [22]; see, also, [16], [17], and
[38]): α−planes of a function of GT2 FSs equal that function
applied to the α−planes of those GT2 FSs.3

Definition 2: A horizontal-slice fuzzy system is analogous
to an IT2 fuzzy system where all of the well-known IT2 FS
computations occur on the horizontal slice.

Definition 3: A WH GT2 fuzzy system is an aggregation of
kmax horizontal-slice fuzzy systems, as in Fig. 3, where aggre-
gation occurs by means of defuzzification.

The idea of aggregating horizontal-slice fuzzy systems was
proposed originally by4 Wagner and Hagras [44]–[46] and was
expounded upon in [30]. As in [31, ch. 11], it is referred to in
this paper as the WH GT2 fuzzy system, so as to distinguish it
from other kinds of GT2 fuzzy systems that may be developed
in the future.

C. Rules

As in [32], it is assumed that a fuzzy system (IT2 or WH
GT2) has M rules, p inputs x1 ∈ X1 , . . . , xp ∈ Xp , and one
output y ∈ Y, where xi is described by Qi linguistic terms Txi

=
{X̃ij}Qi

j=1 , and y is described either by Qy linguistic terms,

Ty = {Ỹj}Qy

j=1 , or by a function gl(x1 , . . . , xp) (l = 1, . . . , M).
Just as the M rules of an IT2 fuzzy system can have two different
canonical structures, Zadeh and TSK, the M rules of a WH GT2
fuzzy system can also have these two different structures. The
distinction between IT2 and WH GT2 is associated with the
nature of the MFs, which is not important when forming the
rules. The structure of the rules remains exactly the same in
the WH GT2 case but now some or all of the sets involved
are GT2. Rule antecedents and consequents are still denoted
(i = 1, . . . , p; l = 1, . . . , M) F̃ l

i and G̃l , respectively. See [32,
Def. 6] for the structures of the antecedents and consequents of
generic Zadeh and TSK rules; this definition applies as well for
GT2 FSs.

3This is a generalization of the well-known result for T1 fuzzy sets (since an
α− plane is a union of α− cuts) that, under Zadeh’s extension principle [51],
α− cuts of a function of T1 FSs equal that function applied to the α− cuts of
those T1 FSs (e.g., [21, Th. 2.9] and [37]).

4In the Wagner and Hagras references, the term “zSlice” is used instead of
horizontal-slice.

D. Firing Set in a GT2 Fuzzy System

For a WH GT2 fuzzy system, fuzzy input sets in X1 × · · · ×
Xp , which flow through a set of M IF-THEN rules, are mapped
into a GT2 fuzzy output set in Y , one horizontal slice at a time.
The focus of this paper is primarily on the interaction of each
fuzzy input with its respective GT2 antecedent, which then col-
lectively lead to a5 T1 firing set that is the same for both Mam-
dani and TSK WH GT2 fuzzy systems. In this paper, to keep
things as simple as possible, we assume singleton fuzzification,
which means that the “fuzzy input” is treated as a crisp number,
although the approach that is taken herein is conceptually the
same regardless of the nature of the fuzzifier.6

For each rule, it is known (e.g., [31, Th. 7.7]) that, when
xi = x′

i , only the vertical slice (Definition B.3) F̃ l
i (x

′
i) of the

rule-antecedent GT2 FS F̃ l
i is activated, and it has the following

α − cut decomposition7 [e.g., see (1) or (B-17) for α− cut
notations] (i = 1, . . . , p; l = 1, . . . , M):

F̃ l
i (x′

i) ⇔ μF̃ l
i (x ′

i )(u) = sup
α∈[0,1]

α
/[

al
i,α (x′

i) , bl
i,α (x′

i)
]

(4)

For a WH GT2 Mamdani or TSK fuzzy system, the firing
interval at level α, F l

α (x′), is (l = 1, . . . ,M and8 α ∈ [0, 1] =
1/kmax , 2/kmax , . . . , 1)

F l
α (x′)≡

[
f l

α
(x′) , f̄ l

α (x′)
]
=
[
Tp

i=1a
l
i,α (x′

i) , T p
i=1b

l
i,α (x′

i)
]
.

(5)
In (5), T denotes a t-norm, usually the minimum or product.
Observe that in (5), for a WH GT2 fuzzy system, x′ is pro-

cessed nonlinearly 2kmax times, kmax times using LMF quan-
tities [the al

i,α (x′
i)], and kmax times using UMF quantities

[bl
i,α (x′

i)]. On the other hand, in an IT2 fuzzy system, x′ is
processed nonlinearly only twice using the LMF and UMF of
FOUs.

Definition 4: In a WH GT2 fuzzy system, a T1 firing set is
said to contribute to its output only if it is nonzero. It is the UMFs
of rule antecedent α− planes that establish exactly where this
occurs in X1 × · · · × Xp , and it occurs when the UMFs of rule
antecedent α− planes [bl

i,α (x′
i)] are simultaneously nonzero9

for α ∈ [0, 1].

E. Type Reduction (TR) and Defuzzification

TR for a WH GT2 fuzzy system is performed for each hor-
izontal slice fuzzy system after which the type-reduced results
are aggregated across all of the horizontal slice fuzzy systems
by means of defuzzification (see Fig. 3).

5In a T1 fuzzy system, this is a firing level, whereas in an IT2 fuzzy system,
it is a firing interval.

6Nonsingleton fuzzification for a WH GT2 fuzzy system could include T1,
IT2, or even GT2 nonsingleton fuzzifiers (see [31, Sec. 11.3] for further discus-
sions about this).

7In a GT2 fuzzy system, one needs to keep track of (e.g., in al
i,α ) which

antecedent is referred to (the first subscript i), which rule is referred to (the
superscript l), and which α − cut is referred to (the second subscript α); this
unavoidably leads to heavy subscript and superscript notations.

8Why α = 0 is not needed is explained below (8).
9If the UMF of a rule antecedent α− plane is zero, the LMF of a rule

antecedent α− plane must also be zero because an LMF can never be larger
than the UMF [i.e., in (1), bl

i ,α (x′
i ) ≥ al

i,α (x′
i )].
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Definition 5: Horizontal-slice TR is TR applied to horiz-
ontal-slice quantities, the result being a horizontal-slice type-
reduced set.

This paper focuses on horizontal-slice center-of sets TR (COS
TR) followed by defuzzification, because COS TR is arguably
the most widely used TR. However, the results in this paper are
also applicable to height TR and centroid TR.

Definition 6: Horizontal-slice COS TR maps mixtures of the
lower and upper values of the firing intervals at level α, in a WH
GT2 Mamdani fuzzy system,10 into yCOS

l,α (x′) and yCOS
r,α (x′),

where (YCOS,α (x′) = α/[yCOS
l,α (x′), yCOS

r,α (x′)]):

yCOS
l,α (x′)=

∑Lα

i=1 cl(G̃i
α )f̄ i

α (x′)+
∑M

i=Lα +1 cl(G̃i
α )fi

α
(x′)

∑Lα

i=1 f̄ i
α (x′)+

∑M
i=Lα +1 fi

α
(x′)

(6)

yCOS
r,α (x′)=

∑Rα

i=1 cr(G̃i
α )fi

α
(x′)+

∑M
i=Rα +1 cr(G̃i

α )f̄ i
α (x′)

∑Rα

i=1 fi
α
(x′)+

∑M
i=Rα +1 f̄ i

α (x′)
(7)

in which cl(G̃i
α ) and cr (G̃i

α ) are the left and right end-points of
the centroid of the horizontal slice of the GT2 rule-consequent
G̃i , and the switch points Lα and Rα have to be computed
iteratively by any of the many different published algorithms,
the most widely used being the KM [20], EKM [47], and EIASC
[48].

There are different ways to perform defuzzification on any of
the just-computed horizontal-slice type-reduced FSs (see [30]
and [31, Sec. 11.7]). Here, for illustrative purposes, we use
average of end-points defuzzification.

Definition 7: In average of end-points defuzzification, one
first computes the average value of each [yCOS

l,α (x′), yCOS
r,α (x′)]

and locates a spike at that value with amplitude α after which
the k spikes are defuzzified by computing their COG, as

yWH(x′) =

∑k
i=1 αi

[(
yCOS

l,αi
(x′) + yCOS

r,αi
(x′)

)/
2
]

∑k
i=1 αi

. (8)

Observe that αi = 0 makes no contribution in (8).11

F. First-Order Rule Partitions for T1 and IT2 Fuzzy Systems

One of the important things learned from [32] is that first-
and second-order rule partitions of X1 × · · · × Xp are com-
pletely determined by the respective rule partitions of each
(i = 1, . . . , p) Xi separately, because when minimum or prod-
uct t-norms are used, if even one component of a rule’s firing
level (interval) is zero, then that rule does not contribute to the
output of the fuzzy system.12 This carries over as well from T1
and IT2 fuzzy systems to WH GT2 fuzzy systems.

Definition 8: [32] In a T1 (IT2) fuzzy system, a T1 (IT2)
first-order rule partition of Xi is a collection of nonoverlapping

10Similar equations occur for normalized A2-C0 and A2-C1 WH GT2 TSK
fuzzy systems [31, Sec. 11.6.3].

11Wagner and Hagras [45] were the first to make this observation.
12For example, let fi denote a firing level, then min(anyfi =

0, all otherfi ) = 0 and product(anyfi = 0, all otherfi ) = 0.

intervals in Xi , in each of which the same number of same rules
is fired whose firing levels (intervals) contribute to the output of
that system.

See [32, Tables II and III] as well as its Supplementary Ma-
terials for notations for T1 (IT2) first-order rule partitions; a
formal two-step procedure for establishing these partitions on a
drawing of the MFs (FOUs) of xi ; many examples of T1 and IT2
first-order rule partitions; and, formulas for the total number of
T1 (IT2) first-order rule partitions of X1 × · · · × Xp, as well as
for the fixed number of rules that are fired in each first-order rule
partition. These formulas are provided below (see Section III-B)
but in the context of horizontal slices. It was also observed in
[32] that increasing the number of first-order rule partitions can
be achieved by granulating xi more finely into more FSs.

G. Second-Order Rule Partitions for T1 and IT2
Fuzzy Systems

Definition 9: [32] In a T1 (IT2) fuzzy system, a T1 (IT2)
second-order rule partition of Xi occurs when the MF (FOU) of
a T1 (IT2) FS that is associated with xi changes its mathematical
formula (slope) within a T1 (IT2) first-order rule partition of Xi .

Definition 10: The point at which an MF (LMF, UMF, or
both) changes its mathematical formula (slope) within (but not
on the boundary of) a first-order rule partition is called a parti-
tion kink.

See [32, Tables IV and V] as well as its Supplementary Ma-
terials for notations for T1 (IT2) second-order rule partitions;
a formal four-step procedure for establishing these partitions
on a drawing of the first-order rule partitions of Xi ; many
examples of T1 and IT2 second-order rule partitions; and, a
formula for the total number of T1 (IT2) second-order rule par-
titions of X1 × · · · × Xp . This formula is provided below (see
Section III-C) but in the context of horizontal slices. It was also
observed in [32] that greater sculpting is achieved by using MFs
(UMFs and LMFs) that have more partition kinks.

Finally, it was stated in [32] that

Because an IT2 FS is described by two T1 FSs (LMF and UMF), it
always has the potential to have more second-order partitions than a
T1 FS; hence, an IT2 fuzzy system almost always has the potential to
out-sculpt a T1 fuzzy system when both use the same number of MFs
(FOUs) for each variable.13 . . . it is very common for an IT2 fuzzy
system to have many (vastly) more second-order rule partitions than
a T1 fuzzy system.

H. Novelty Partitions

Definition 11: [32] IT2 novelty partitions of X1 × · · · × Xp

occur only when TR is used and result from different end-points
of a firing interval being used to compute the end-points of
the type-reduced set. They occur within an IT2 first-order rule
partition, regardless of whether or not there are any IT2 second-
order rule partitions.

As is stated in [32]: IT2 novelty partitions

. . . provide us with additional insight into the further partitioning
(sculpting) of X1 × · · · × Xp , something that can only occur for

13Why this is stated as “almost always” rather than as “always” is explained
in [32, Sec. IV].



62 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

an IT2 fuzzy system that uses TR, and can never occur in a T1
fuzzy system. IT2 novelty partitions may help to explain why system
performance is often arguably better for an IT2 fuzzy system that
uses TR than it is for one that does not use TR.

III. RULE PARTITIONS FOR WH GT2 FUZZY SYSTEMS

According to Section II-F, the study of sculpting the state
space for IT2 fuzzy systems begins by drawing the FOUs for
the IT2 FSs of a generic variable x1 ∈ X1 . This is very easy to
do for IT2 FSs because an IT2 FS is defined by its FOU and
it is easy to draw FOUs. In order to study the sculpting of the
state space for WH GT2 fuzzy systems, we will need to draw
α− plane FOUs. How to do this has (to the best knowledge of
this author) never been explained before and is explained next
for continuous functions of u.

A. Procedure for Drawing α− Plane FOUs

Here is an eight-step procedure for drawing α− plane FOUs14

when both the LMF and UMF of an FOU are piecewise linear.15

1) Begin with the drawn α = 0 FOUs.
2) If a point is shared by both the LMF and the UMF of an

α = 0 FOU, insert a star (�) at that point [this may occur
when u = 0 or u = 1; however, as a reviewer pointed out,
this can also occur when the FOU contains a segment in
which both the LMF and the UMF are the same function
(e.g., a straight line), in which case the entire function is
starred].

3) Locate all of the nonstarred MF kinks of the α = 0 FOUs,
and, if such an MF kink occurs on the LMF (UMF) of an
α = 0 FOU, insert a (green) vertical line extending from
this kink to the upper (lower) MF of that FOU.

4) If the LMF and UMF of the left (right) end of the α = 0
FOU do not touch, insert a (green) vertical line between
them (e.g., see Example SM-1 in the Supplementary
Material).

5) Choose the values of α for which α-plane FOUs are to
be drawn, where α ∈ (0, 1]. Call any one of the values α′.
Repeat steps 6–8 for all of the chosen values of α.

6) Reposition each of the steps 3 and 4 vertical lines, by
a) shortening it to length bα ′(x) − aα ′(x) using (3)

(this formula changes for other kinds of secondary
MFs).

b) moving it to position bα ′(x) using line three of (1)
(this formula also changes for other kinds of sec-
ondary MFs).

c) put a star on the top and bottom of these lines.
7) Create the α = α′−plane FOUs on the top of each of the

α = 0 FOUs by proceeding from the left to the right, and
for each FOU

14Example 2 illustrates the steps of this procedure, and so the reader may
want to read that example as he/she reads the steps of this procedure.

15The procedure for other kinds of LMFs and UMFs is explained at the end
of this section.

Fig. 4. Figures for Example 2. (a) FOUs and results of implementing: steps
1–4, (b) steps 5 and 6, (c) step 7, and (d) step 8.

a) connecting its top (bottom) starred points with
straight lines, the result being the UMF (LMF) of
the α = α′−plane FOU,16

b) shading in the area between the UMF and LMF of
the α = α′ FOU, the result being the α = α′-plane
FOU (superimposed on the α = 0 FOUs).

8) Remove the α = 0 FOUs and all of the starred points, the
result being the α = α′−plane FOUs.

Example 2: Consider x1 described by three terms X̃11 , X̃12 ,
and X̃13 , each of whose FOU (step 1) is depicted in Fig. 4(a).
Observe in Fig. 4(a) that (step 2) FOU(X̃11)0 has a starred point
at (0,1) and (x13 , 0), FOU(X̃12)0 has a starred point at (0,0),
(x13 , 1), and (x16 , 0), and FOU(X̃13)0 has a starred point at
(x13 , 0) and (x16 , 1); (step 3) LMF(X̃11)0 [UMF(X̃11)0] has a
nonstarred kink (green line) at (x11 , 0) [nowhere], LMF(X̃12)0
[UMF(X̃12)0] has a nonstarred kink (green lines) at (x12 , 0)
and (x14 , 0) [nowhere], and LMF(X̃13)0 [UMF(X̃13)0 ] has a
nonstarred kink (green line) at (x15 , 0) [nowhere]. Step 4 is not
activated.

For this example, the secondary MFs were assumed to be
isosceles triangles (w ≡ 0.5) and (step 5) α′ ≡ 0.5, so that (step
6) the lengths of the green lines [see Fig. 4(b)] are shortened
to17 one-half of their [see Fig. 4(a)] lengths and the lines are
centered18 at the midpoints of the longer lines in Fig. 4(a).
Fig. 4(c) and (d) depicts the results of steps 7 and 8, respectively.

Fig. 5 depicts the results of applying this eight-step procedure
for four values of α′. Because the secondary MFs are triangles,
the results for α′ = 1 are T1 FSs. A three-dimensional plot
would show each of these four α′ FOUs raised to its level α′,
but such a plot is not needed in the rest of this paper.

Example SM-1 in the Supplementary Material illustrates this
eight-step procedure when the LMF and UMF of the left (right)

16It is this step that makes use of the assumed piecewise linear natures of the
LMF and UMF of the FOU, which lets adjacent starred points be connected by
straight lines.

17Using (3), b0 .5 (x) − a0 .5 (x) = 0.5[μ̄Ã (x) − μ
Ã

(x)].
18Using (1), [b0 .5 (x) + a0 .5 (x)]/2 = [μ̄Ã (x) + μ

Ã
(x)]/2.
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Fig. 5. Example 2 α′− planes, when α′= (a) 0.25, (b) 0.5, (c) 0.75, and
(d) 1. For α′ = 0, use Fig. 4(a) (delete the four green vertical lines).

end of the α = 0 FOU do not touch, so that step 4 is acti-
vated. Examples SM-2–SM-10 further illustrate this eight-step
procedure.

When the LMF or the UMF of an FOU is not piecewise linear,
then the simplest way to draw an α-plane FOU is to program
aα (x) and bα (x) using (1) in which the nonlinear natures of
μ̄Ã (x) and μ

Ã
(x) are inserted, and to let the computer provide

the plot. Of course, this could also have been done when both
the LMF and UMF of an FOU are piecewise linear, but this
author believes that more insight is gained about rule partitions
on each α-plane by using the eight-step procedure.

B. First-Order Rule Partitions for WH GT2 Fuzzy Systems

Definition 12: In a WH GT2 fuzzy system, a WH GT2 (α)
first-order rule partition of Xi is a collection of nonoverlapping
intervals of Xi at level α, in each of which the same number of
same rules is fired whose firing intervals at level α contribute to
the output of that system.

Notations for WH GT2 (α) first-order rule partitions are
given in Table I. A formal two-step procedure, which establishes
P 1

GT2(α)(k
α
i |xi), NR (kα

i ), and N 1
GT2(α)(Xi) on a drawing of

the α− plane FOUs of xi , is given in Table II.
Example 3: This is a continuation of Example 2. The results

for step 1 in Table II are shown in Fig. 6 for five values of α′.
Observe that N 1

GT2(α ′)(Xi) = 2 and that the locations and sizes
of the WH GT2 (α′) first-order rule partitions are the same for
all five values of α′. Examples SM-11–SM-20, which are in the
Supplementary Material, demonstrate similar results.

Formulas for N 1
GT2(α)(X1 , . . . , Xp) and NR (kα

1 , . . . , kα
p )

are {these are analogous to [32, eqs. (6) and (7)]}

N 1
GT2(α) (X1 , . . . , Xp) =

p∏

i=1

N 1
GT2(α)(Xi) (9)

NR

(
kα

1 , . . . , kα
p

)
=

p∏

i=1

NR (kα
i ). (10)

From all of the examples, one observes that the number of
WH GT2 (α) first-order rule partitions, as well as their locations

TABLE I
NOTATIONS USED FOR WH GT2 (α) FIRST-ORDER RULE PARTITIONS

TABLE II
TWO-STEP PROCEDURE FOR ESTABLISHING WH GT2 (α) FIRST-ORDER RULE

PARTITION QUANTITIES FOR A SINGLE VARIABLE xi ON A DRAWING OF ANY

OF ITS α-PLANE FOUS

and sizes, is the same for all values of α. Two reasons for
this are 1) starred points determined in step 2 of the eight-step
procedure for drawing α−plane FOUs are fixed points on all of
those FOUs, because their vertical slice is a vertical line; and 2)
these starred points establish locations of the boundaries of the
WH GT2 (α) first-order rule partitions, and since they are fixed
points, one concludes that the number of WH GT2(α) first-order
rule partitions, as well as their locations and sizes, is the same
for all values of α.

Because α = 0 corresponds to the FOU of an IT2 fuzzy sys-
tem (in which case, the results of this paper reduce to those in
[32]), one can also conclude that the number of first-order rule
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Fig. 6. Example 3 WH GT2 (α′) first-order rule partitions when α′= (a) 0,
(b) 0.25, (c) 0.5, (d) 0.75, and (e) 1.

partitions for a WH GT2 fuzzy system and its associated IT2
fuzzy system is the same.

C. Second-Order Rule Partitions for WH GT2 Fuzzy Systems

Definition 13: In a WH GT2 fuzzy system, a WH GT2(α)
second-order rule partition of Xi occurs when any FOU at level
α that is associated with xi changes its mathematical formula
(slope) within a WH GT2 (α) first-order rule partition of Xi .

Notations for WH GT2 (α) second-order rule partitions are
given in Table III. A formal four-step procedure that establishes
P 2

GT2(α)(k
α
i ,mkα

i
|xi), N 2

GT2(α)(k
α
i |xi), and N 2

GT2(α)(Xi) on
a drawing of the WH GT2 (α) first-order rule partitions of Xi

is given in Table IV.
Example 4: This is a continuation of Example 3. The results

for steps 1–3 in Table IV are shown in Fig. 7 for five values of
α′. Observe (see the encircled numbers) that, for all five values
of α′, N 2

GT2(α ′)(1|x1) = N 2
GT2(α ′)(2|x1) = 3, so that (step 4)

N 2
GT2(α ′)(X1) = 6. Additionally, observe that the locations and

the widths of the WH GT2 (α′) second-order rule partitions of
Xi are the same for all five values of α′. Examples SM-11–
SM-20, which are in the Supplementary Material, demonstrate
similar results.

A formula for N 2
GT2(α)(Xi) is

N 2
GT2(α)(Xi) =

N 1
G T 2 (α ) (Xi )
∑

kα
i =1

N 2
GT2(α) (kα

i |xi). (11)

TABLE III
NOTATION USED FOR WH GT2 (α) SECOND-ORDER RULE PARTITIONS

TABLE IV
FOUR-STEP PROCEDURE FOR ESTABLISHING WH GT2 (α) SECOND-ORDER

RULE PARTITION QUANTITIES FOR A SINGLE VARIABLE xi ON A DRAWING OF

ITS RESPECTIVE WH GT2 (α) FIRST-ORDER RULE PARTITIONS

In (11), N 2
GT2(α)(k

α
i |xi) are obtained by counting (see

Table IV, step 3). A formula for N 2
GT2(α)(X1 , . . . , Xp) is

N 2
GT2(α) (X1 , . . . , Xp) =

p∏

j=1

[
N 2

GT2(α)(Xj ) + Zα (Xj )
]

−
p∏

j=1

Zα (Xj ) (12)
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Fig. 7. Example 4 WH GT2 (α′) first- and second-order rule partitions when
α′= (a) 0, (b) 0.25, (c) 0.5, (d) 0.75, and (e) 1. The encircled numbers are
N 2

GT2(α ′) (k
α ′
1 |x1 ). The numbers along the horizontal axis (mα ′

k 1
) index the

second-order rule partitions within their respective first-order rule partition.

Zα (Xj ) =

N 1
G T 2 (α ) (Xj )
∑

kα
j =1

ξ
(
kα

j |xj

)
(13)

ξ(kα
j |xj ) =

{
0 if N 2

GT2(α)

(
kα

j |xj

) �= 0

1 if N 2
GT2(α)

(
kα

j |xj

)
= 0

. (14)

Note that (12) is analogous to [32, eq. (13)] and that the
explanation and reason that are given for the appearance of
Z(Xj ) in [32, eq. (13)] are the same for why Zα (Xj ) appears
in our (12).

From all of the examples, one observes that the number of WH
GT2 (α) second-order rule partitions, as well as their locations
and sizes, is the same for all values of α. Three reasons for this
are

1) Starred points determined in step 2 of the eight-step pro-
cedure for drawing α−plane FOUs are fixed points on all
of those FOUs, because their vertical slice is a vertical
line.

2) Nonstarred MF kinks determined in step 3 of the eight-
step procedure for drawing α−plane FOUs are also fixed
locations on all of those FOUs (the green vertical lines at
those points are only repositioned vertically).

3) The starred points and the nonstarred MF kinks establish
locations of the boundaries of the WH GT2 (α) second-
order rule partitions, and, since they are fixed, one con-
cludes that the number of WH GT2(α) second-order rule

partitions, as well as their locations and sizes, is the same
for all values of α.

Because α = 0 corresponds to the FOU of an IT2 fuzzy sys-
tem (in which case the results of this paper reduce to those in
[32]), one also concludes that the number of second-order rule
partitions for a WH GT2 fuzzy system and its associated IT2
fuzzy system is the same.

In summary, we have shown, somewhat surprisingly, that
the number, locations, and sizes of first- and second-order rule
partitions for a WH GT2 fuzzy system and its associated IT2
fuzzy system are the same.

D. Deeper Study of Second-Order Rule Partitions

The analyses that are given next demonstrate that something
fundamentally new occurs in a WH GT2 fuzzy system that lets it
be distinguished from an IT2 fuzzy system.

Changes of the mathematical formula (slope) of an FOU
(Definition 13) can occur in any one of three different ways (Ã
is a generic T2 FS): 1) LMF(Ãα ), 2) UMF(Ãα ), or 3) both
LMF(Ãα ) and UMF(Ãα ). Such changes were not examined in
[32] but they are here.

Definition 14: As a transition is made from one WH GT2
(α) second-order rule partition of Xi to the next one, the next
one is said to be maximally changed when both LMF(Ãα ) and
UMF(Ãα ) change their formulas (slopes) in it; otherwise, when
only LMF(Ãα ) or UMF(Ãα ) changes its formula (slope) in it,
it is said to be minimally changed.

Example 5: This is a continuation of Example 4, but only
for α′ = 0 and 0.5, since the numbers of WH GT2 (α′) second-
order rule partitions are the same for all values of α′. Examining
Fig. 7(a), as x1 sweeps from left to right, observe that

1) when k0
1 = 1 [(X̃11)0 and (X̃12)0 are activated] and

mk 0
1

goes from 1 to 2 (1 → 2), LMF(X̃11)0 changes,

and UMF(X̃11)0 , LMF(X̃12)0 , and UMF(X̃12)0 are
unchanged;

2) when k0
1 = 1 and mk 0

1
goes from 2 to 3 (2 → 3),

LMF(X̃11)0 , UMF(X̃11)0 , and UMF(X̃12)0 are all un-
changed, but LMF(X̃12)0 changes;

3) when k0
1 = 2 [(X̃12)0 and (X̃13)0 are activated] and

mk 0
1

goes from 1 to 2 (1 → 2), LMF(X̃12)0 changes,

and LMF(X̃13)0 , UMF(X̃12)0 , and UMF(X̃13)0 are un-
changed; and

4) when k0
1 = 2 and mk 0

1
goes from 2 to 3 (2 → 3),

LMF(X̃12)0 , UMF(X̃12)0 , and UMF(X̃13)0 are all un-
changed, but LMF(X̃13)0 changes. These four sets of
results are summarized in the top portion in Table V.

Proceeding in the same manner for Fig. 7(c), one obtains the
results that are summarized in the bottom portion in Table V.
Observed in Table V that

1) the WH GT2(0.5) second-order rule partitions con-
tain eight LMF or UMF changes, whereas the WH
GT2(0) second-order rule partitions contain only four
such changes, which is a 100% increase in MF changes for
WH GT2(0.5) over WH GT2(0) (the IT2 fuzzy system);
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TABLE V
WHICH MFS CHANGE (C) OR ARE UNCHANGED (UC) IN FIG. 7(A) AND (C)

WH GT2 (α′) SECOND-ORDER RULE PARTITIONS

2) the WH GT2(0.5) second-order rule partitions of Xi are
always maximally changed, whereas (in this example),
the WH GT2(0) second-order rule partitions of Xi are al-
ways minimally changed. Finally, we are able to see some
unique differences between the sculpting capabilities of
WH GT2 and IT2 fuzzy systems.

Examples SM-11–SM-20, which are in the Supplementary
Material, further demonstrate similar results. Those ten exam-
ples demonstrate that

1) the WH GT2(0.5) second-order rule partitions of Xi are
always maximally changed;

2) sometimes a WH GT2(0) second-order rule partition of
Xi may be maximally changed, but most are not; and

3) except for Example SM-11, there is from a 33.33% to a
100% increase in MF changes for WH GT2(0.5) over WH
GT2(0).

From all of these examples, one concludes that, even though
the number of second-order rule partitions for a WH GT2 fuzzy
system and its associated IT2 fuzzy system is the same, the WH
GT2 fuzzy system always has the maximum number of changes
(two) in each of its second-order rule partitions, for each of its
horizontal-slice fuzzy systems, whereas its associated IT2 fuzzy
system does not. It is this greater variability that provides the
potential for better performance of a WH GT2 fuzzy system over
an IT2 fuzzy system. Because this variability occurs within a
second-order rule partition, it is still a second-order effect.

IV. NOVELTY PARTITIONS FOR WH GT2 FUZZY SYSTEMS

Paraphrasing [32, Sec. IV], so far our attention has been
directed exclusively at the partitioning of X1 × · · · × Xp due to
the interactions of inputs to a WH GT2 fuzzy system with their
respective antecedents. Each horizontal slice second-order rule
partition contains a nonlinear system where the exact nature
of the nonlinearity depends on rule consequents and output
processing. In a WH GT2 fuzzy system that uses TR, there is

TABLE VI
RULE BASE OF THE WH GT2 FPID CONTROLLER [32]

Fig. 8. FOUs and first-order rule partitions when α′ = 0 for the Example 6
WH GT2 FPID controller (see [32]).

another layer of partitioning of X1 × · · · × Xp into WH GT2(α)
novelty partitions.

Definition 15: WH GT2(α) novelty partitions of X1 × · · · ×
Xp occur only when TR is used and result from different end-
points of a horizontal level firing interval being used to compute
the end-points of the type-reduced set. They occur within a
WH GT2 (α) first-order rule partition, regardless of whether
or not there are any WH GT2 (α) second-order rule partitions.
WH GT2 (α) novelty partitions may help to explain why system
performance is often arguably better for a WH GT2 fuzzy system
that uses TR than it is for one that does not use TR.

It is very difficult to determine and display the geometry of
WH GT2 (α) novelty partitions because there are no closed-
form formulas for the end-points of a type-reduced set. So, as
was done in [32, Sec. IV], we shall illustrate such partitions by
means of an example.

Example 6: Our focus is on a WH GT2 fuzzy PID (FPID)
controller U that has two normalized inputs, E and Ė ≡ ΔE.
It uses the symmetrical 3 × 3 rule base in Table VI. The rule
structure of the WH GT2 controller is (l = 1, . . . , 9)

R̃l
Z : IF E is F̃ l

1 and ΔE is F̃ l
2 THEN U is Gl. (15)

In (15), both E and ΔE are described by three overlapping
GT2 FSs whose FOUs are depicted in Fig. 8, and Gl are the
crisp singletons that are tabulated in Table VI. The secondary
MFs used here for all of the GT2 FSs are triangles. These GT2
FSs have been studied in Examples SM-1, SM-11, and SM-21
in the Supplementary Material. Example SM-11 shows that E
and ΔE both have two WH GT2 (α) first-order rule partitions
in which two rules are fired and no second-order rule partitions.
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Fig. 9. WH GT2 (α) novelty partitions for yCOS
l ,α (E, ΔE) in the WH GT2

FPID controller. Switch point L corresponds to Lα in (6), where (a) α = 0 (the
IT2 FPID controller), (b) α = 0.5 and w = 0, (c) α = 0.5 and w = 0.5, and
(d) α = 0.5 and w = 1.

Note also that when α′ = 0 the WH GT2 FPID controller is the
same as the IT2 FPID controller.

As mentioned in [32], a T1 FPID controller that uses the
UMFs of the three FOUs will also have two T1 first-order rule
partitions in which two rules are fired, and no T1 second-order
rule partitions. These facts make this a very interesting example,
because the playing field has been leveled for T1, IT2, and WH
GT2 FPID controllers in terms of first- and second-order rule
partitions.

The main purpose of this example is to compare some
WH GT2 (α) novelty partition plots of yCOS

l,α (E,ΔE) and
yCOS

r,α (E,ΔE) for the four regions in Fig. 8, using three different
triangle secondary MFs [in (1), w = 0, 0.5, 1] and two horizon-
tal slices [α′ = 0 (the IT2 FPID controller) and α′ = 0.5].

Table SM-10 in the Supplementary Material tabulates im-
portant information for each of the four regions. This is such
a relatively simple example that, instead of using any of
the iterative algorithms to compute the switch points of the
COS horizontal-slice type-reduced sets, it is more instructive
to use brute force by considering the five possible iterations
that are summarized in Table SM-11 in the Supplementary
Material.

Figs. 9 and 10 depict the WH GT2 (α) novelty partitions, for
yCOS

l,α (E,ΔE) and yCOS
r,α (E,ΔE), respectively, from which the

following observations can be made.
1) Each of the four quadrants of (E × ΔE)α has four novelty

partitions.
2) WH GT2(0.5) novelty partitions for the three kinds of

triangle secondary MFs all look quite different from their

Fig. 10. WH GT2 (α) novelty partitions for yCOS
r,α (E, ΔE) in the WH GT2

FPID controller. Switch point R corresponds to Rα in (7), where (a) α = 0
(the IT2 FPID controller), (b) α = 0.5 and w = 0, (c) α = 0.5 and w = 0.5,
and (d) α = 0.5 and w = 1.

IT2 counterparts, thereby demonstrating that horizontal-
slice TR leads to quite different novelty partitions.

3) The choice made for the kind of triangle secondary MF (by
choosing different values of w) can significantly change
the sizes of the GT2(0.5) novelty partitions.

4) There seems to be a flow in the sizes of the novelty parti-
tions as w increases from 0 to 0.5 to 1.

When defuzzification is performed, using (8), each horizontal
slice (E × ΔE)αi

has eight WH GT2 (αi) novelty partitions
for both yCOS

l,α (E,ΔE) and yCOS
r,α (E,ΔE), for a total of 16

such novelty partitions. When kmax horizontal slices are used,
(8) involves 16kmax novelty partitions, whereas an IT2 FPID
controller only involves 16 novelty partitions.

This scaling up of the number of novelty partitions is what
provides the WH GT2 FPID controller that uses TR the potential
for better performance than both the IT2 FPID controller and
the WH GT2 FPID controller that does not use TR. How much
improvement is actually obtained, what kmax should be, and
what are the best locations for the kmax horizontal slices are
topics for future research.

V. SUMMARY

In order to see the forest from the trees, Table VII summarizes
everything that has been learned to-date about crisp, T1, IT2,
and GT2 fuzzy systems in terms of first- and second-order rule
partitions, maximum changes in second-order rule partitions as
well as novelty partitions. This table provides the reader with
the “big picture” and should help them communicate to others
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TABLE VII
SUMMARYa

(slope)

why the potential for improved performance exists as one goes
from crisp to T1, to IT2, and to GT2 fuzzy systems.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper has provided some new and novel application-
independent perspectives on why improved performance usually
occurs as one goes from an IT2 fuzzy system to a GT2 fuzzy
system, and in so doing has extended the results given in [32]
from IT2 fuzzy systems to GT2 fuzzy systems. It does this
by using the horizontal-slice representation of a GT2 FS and
GT2 fuzzy system (called a WH GT2 fuzzy system) and by
examining first- and second-order rule partitions, as well as
novelty partitions for the horizontal slices. It has demonstrated
that, for triangle and trapezoid secondary MFs, the numbers
of first- and second-order rule partitions are the same for IT2
and WH GT2 fuzzy systems, but that a maximum amount of
change occurs in every second-order rule partition for each of
the horizontal-slice fuzzy systems of a WH GT2 fuzzy system,
whereas this does not occur in such partitions in an IT2 fuzzy
system. It has also demonstrated that when TR is used in a
WH GT2 fuzzy system, the total number of novelty partitions is
directly proportional to the number of horizontal slices, and that
consequently, there are many more such partitions that occur in
an IT2 fuzzy system that also uses TR. Table VII presents the
reader with the “big picture” and should help them communicate
to others why the potential for improved performance exists as
one goes from crisp to T1, to IT2, and to GT2 fuzzy systems.

It is the author’s conjecture that it is the maximum changes
that occur in every second-order rule partition, as well as the
greater number of novelty partitions, when TR is used that pro-
vides a GT2 fuzzy system with the potential to outperform an
IT2 fuzzy system.

Some open research questions and extensions to this paper
are

1) Extend its results to (a) nonsingleton fuzzification, (b)
piecewise-continuous and convex secondary MFs, and (c)
Gaussian FOUs;

2) Study how (or if) first- and second-order partitions, as
well as novelty partitions, can be extended to nonconvex
secondary MFs [40], [49];

3) Examine the robustness of the defuzzified output of a
WH GT2 fuzzy system to the number and locations of
horizontal slices [I conjecture that two or three horizontal
slices will suffice, because of the clustering effect that is
present in the defuzzification formula (8)];

4) Quantify the difference between the defuzzified outputs
of IT2 and a WH GT2 fuzzy systems; and

5) Examine the following conjecture: the switch points Lα

and Rα , in (6) and (7). respectively, remain fixed within
a second-order rule partition.

APPENDIX A
BACKGROUND ON UNCERTAINTY PARTITIONS19

Definition A.1: A crisp partition [see Fig. 11(a)] of the real
variable x comprises nonoverlapping adjacent regions that are
intervals of real numbers, where the degree of membership in
each region is 1. They can be described mathematically using
classical (crisp) sets.

Definition A.2: A first-order uncertainty partition [see
Fig. 11(b)] of the real variable x comprises overlapping in-
tervals, where one is absolutely certain about where the overlap
begins and ends, so that the degree of membership in each

19The material in this appendix has been taken from [32].
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Fig. 11. Four kinds of partitions. (a) Crisp. (b) First-order uncertainty.
(c) Second-order uncertainty with uniform weighting. (d) Second-order un-
certainty with nonuniform weighting. (see [32]).

region of overlap is a real number that is an element of [0,1].
They can be described mathematically using classical (T1) FSs.

Definition A.3: A second-order uncertainty partition [see
Fig. 11(c)] of the real-variable x comprises overlapping inter-
vals where one is unsure about where the overlap begins and
ends, so that the degree of membership in each region of overlap
is an interval of real numbers that is a subset of [0, 1].

Definition A.4: Each region in Xi × [0, 1], in which the de-
gree of membership is an interval of real numbers, is called the
footprint of uncertainty (FOU) of X̃ij [28], [31].

Definition A.5: A uniformly (nonuniformly) shaded FOU, as
in Fig. 11(c) and (d) denotes a uniform (nonuniform) weight-
ing of all of its points and is called a uniformly (nonuni-
formly) weighted second-order uncertainty partition. Uniformly
(nonuniformly) weighted partitions can be described mathemat-
ically using IT2 (GT2) FSs.

APPENDIX B
BACKGROUND ON GENERAL TYPE-2 FUZZY SETS20

Definition B.1: A type-2 fuzzy set (T2 FS; also called a gen-
eral T2 FS), denoted Ã, is the graph of a bivariate function
[1]—called the MF of Ã—on the Cartesian product X × [0, 1]
into [0, 1], where X is the universe for the primary variable of
Ã, x. The MF of Ã is denoted μÃ (x, u) (μÃ for short), called a
type-2 MF, i.e.,

Ã = {((x, u), μÃ (x, u)) |x ∈ X,u ∈ U ≡ [0, 1]} (B-1)

in which 0 ≤ μÃ (x, u) ≤ 1. U is the universe for the secondary
variable u, and in this paper U is always assumed to be [0, 1].
Ã can also be expressed (using Zadeh’s FS notation), as

Ã =
∫

x∈X

∫

u∈[0,1]
μÃ (x, u)/(x, u) (B-2)

where ∫ ∫ denotes union over all admissible x and u.21

20The material in this Appendix has been taken from [31, ch. 6].
21For discrete universes of discourse, in (B-2) ∫ is replaced by

∑
, X is

replaced by Xd , and [0, 1] is replaced by {0, u1 , u2 , . . . , un−1 , 1}.

Definition B.2: For every x ∈ X , the value of μÃ (x, u),
fx(u), is called the secondary grade of x; hence, if x ∈ X ,
then fx(u) ≡ μÃ (x, u), where 0 ≤ fx(u) ≤ 1.

Definition B.3: A secondary MF, μÃ(x)(u), is [1] a re-
striction of function μÃ : X × [0, 1] → [0, 1] to x ∈ X , i.e.,
μÃ(x) : [0, 1] → [0, 1], or in FS notation

μÃ(x)(u) =
∫

u∈[0,1]
μÃ (x, u)/u =

∫

u∈[0,1]
fx(u)/u. (B-3)

Note, importantly, that Ã(x) is a T1 FS,22 which is also re-
ferred to as a secondary set, and as such it can be represented by
its α− cut decomposition. {μÃ(x)(u)|u ∈ [0, 1]} is also called
a vertical slice of μÃ (x, u) (see, also, Definition B.10).

Definition B.4: Jx , the primary membership of x, is23

Jx = {(x, u)|u ∈ [0, 1], μÃ (x, u) > 0}. (B-4)

It can also be expressed as [36] a subset of {x} × Ix , i.e.,

Jx = {x} × Ix (B-5)

where

Ix = {u ∈ [0, 1]|μÃ (x, u) > 0} . (B-6)

Ix is the support of the secondary MF and can be connected24

or disconnected.
Definition B.5: [36] The support of Ã [1] comprises all

(x, u) ∈ X × [0, 1] such that μÃ (x, u) > 0 and is also called
the domain of uncertainty of Ã, DOU(Ã), i.e.,

DOU(Ã) = {(x, u) ∈ X × [0, 1]|μÃ (x, u) > 0} =
⋃

x∈X

Jx.

(B-7)
Definition B.6: When the support of the secondary MF, Ix ,

is closed (so that it is connected; see footnote 24) for x ∈ X ,
i.e.,

Ix = {u ∈ [0, 1]|μÃ (x, u) > 0} =
[
μ

Ã
(x), μ̄Ã (x)

]
(B-8)

where [1]

μ̄Ã (x) = sup {u|u ∈ [0, 1], μÃ (x, u) > 0} (B-9)

μ
Ã
(x) = inf {u|u ∈ [0, 1], μÃ (x, u) > 0} (B-10)

then the domain of uncertainty of Ã is called the footprint of
uncertainty of Ã, FOU(Ã), i.e.,

DOU(Ã) = FOU(Ã)

=
{

(x, u)|x ∈ X and u ∈
[
μ

Ã
(x), μ̄Ã (x)

]}
.

(B-11)

22Notation μÃ (x ) (u) (which is different from the notation used in [28]) is

consistent with the usual labeling of an MF for a T1 FS, where Ã(x) is the
name of that set.

23In [28] and much of the type-2 literature, it is stated that Jx ⊆ [0, 1] and
Jx is left undefined, both of which have been very problematic. In this paper,
the statement Jx ⊆ [0, 1] has been abandoned and Jx is defined. For additional
discussions about this, see [31, Sec. 6.6] and [36].

24A set A ⊆ R is connected if and only if A is an interval (closed, open, or
neither).
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Note that μ
Ã
(x) and μ̄Ã (x) are called the lower and upper

MFs of FOU(Ã) [34] and are the lower and upper (T1 FS)
bounding functions of the FOU, respectively. Commonly used
abbreviations for the lower and upper MFs of Ã are LMF(Ã)
and UMF(Ã).

Definition B.7: The support of LMF(Ã) [UMF(Ã)] is the
crisp set of all points x ∈ X such that μ

Ã
(x) > 0 [μ̄Ã (x) > 0].

Definition B.8: When u ∈ [0, 1] and μÃ (x, u) = 1 for x ∈
X , then Ã is called an interval T2 FS (IT2 FS); it is completely
described by its DOU, so that

Ã = 1/DOU(Ã). (B-12)

Equation (B-12) is an expressive equation that means μÃ (x,

u) = 1 for (x, u) ∈ DOU(Ã), where DOU(Ã) is given in (B-7)
in which μÃ (x, u) > 0 is replaced by μÃ (x, u) = 1.

Definition B.9 [36]: An IT2 FS is called a closed IT2 FS
(CIT2 FS) when Ix is closed for x ∈ X (see Definition B.6). In
this case, DOU(Ã) = FOU(Ã); hence, for a CIT2 FS, (B-12)
can be expressed as

Ã = 1/FOU(Ã) (B-13)

where FOU(Ã) is defined in (B-11). Another way to express
FOU(Ã) for a CIT2 FS is [see, also, (B-7)]

FOU(Ã) =
⋃

x∈X

{x} × Ix =
⋃

x∈X

Jx. (B-14)

CIT2 has often been shortened to IT2.
Definition B.10: The vertical-slice representation of GT2 FS

Ã focuses on each value of the primary variable x and expresses
(B-1) as the union of all of its secondary T1 FSs, i.e.,

Ã =
∫

x∈X

μÃ(x)(u)/x (B-15)

so that [30]

Ã =
∫

x∈X

⎡

⎣
⋃

α∈[0,1]

[
α/Ã(x)α

]
⎤

⎦

/

x

=
∫

x∈X

sup
α∈[0,1]

[
α/Ã(x)α

]
/

x (B-16)

in which the α − cut of the T1 FS Ã(x), Ã(x)α , is given by

Ã(x)α =
{

u
∣
∣
∣μÃ(x) (u) ≥ α

}
≡ [aα (x), bα (x)] . (B-17)

Definition B.11: An α-plane [26], [35] for a GT2 FS Ã,
denoted Ãα , is the union of all primary memberships of Ã
whose secondary grades are greater than or equal to α ∈ [0, 1],
i.e.,

Ãα = {(x, u), μÃ (x, u) ≥ α |x ∈ X,u ∈ [0, 1]}

=
∫

x∈X

∫

u∈[0,1]
{(x, u) |fx(u) ≥ α}. (B-18)

Alternatively, Ãα can be expressed by means of (B-17), as

Ãα =
∫

x∈X

Ã(x)α/x =
∫

x∈X

[aα (x), bα (x)]/x. (B-19)

Ãα has an LMF and a UMF, where (x ∈ X)
{

LMF(Ãα ) = aα (x)

UMF(Ãα ) = bα (x)
. (B-20)

When an α-plane is raised to level α, one obtains a horizontal
slice25 at level α, RÃα

[29], i.e.,

RÃα
= α/Ãα . (B-21)

This has been called an “α-plane raised to level α”or a “zS-
lice” [44]–[46]. Note that RÃα

is an IT2 FS all of whose sec-
ondary grades equal α (rather than 1 as would be the case for
the usual IT2 FS), and that

FOU(RÃα
) = Ãα . (B-22)

Equation (B-22) provides an α-plane with an important in-
terpretation of and connection to an IT2 FS of height α, and
Ã0 = FOU(Ã).

Definition B.12: The horizontal-slice representation of GT2
FS Ã is26

Ã = sup
α∈[0,1]

α

/[∫

x∈X

[aα (x), bα (x)]/x

]

= sup
α∈[0,1]

α/Ãα =
⋃

α∈[0,1]

α/Ãα . (B-23)

Definition B.13: A closed GT2 FS Ã is one whose horizontal
slices are closed for α ∈ [0, 1].

This paper focuses exclusively on closed GT2 FSs; conse-
quently, when we use “GT2 FS” or “IT2 FS,” they are short for
“CGT2 FS” or “CIT2 FS,” respectively.
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 Supplementary Materials 
 

I. More Examples That Illustrate How to Construct α − Plane FOUs 
 
These examples further illustrate the eight-step procedure for constructing α − plane FOUs. They are all 
for  ′α = 0.5 .  
 

Example SM-1. This example illustrates the construction procedure when the LMF and UMF of the left 
(right) end of the FOUs for ( !X11)0  (   (

!X13)0 ) do not touch; hence, Step 4 of the eight-step procedure is 
invoked. 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-1. Figures for Example SM-1. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
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Example SM-2. The descriptions for this example and the remaining ones in this section are the same as 
the wordings in the main body’s Example 2, and are therefore not repeated here or below. 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-2. Figures for Example SM-2. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
 
 
 

Example SM-3: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-3. Figures for Example SM-3. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
 
 
 

x1

   (
!X12 )0    (

!X13)0   (
!X11)0

0

1

 u

x1

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

0

x1

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

0 x1

1

 u
( !X12 )0.5 ( !X13)0.5( !X11)0.5

0

x1

1    (
!X12 )0( !X11)0

0

 u

x1

1

0

 u
   (
!X12 )0( !X11)0

x1

1

0

 u
   (
!X12 )0( !X11)0

x1

1

0

 u
( !X12 )0.5   (

!X11)0.5



 

 3 

Example SM-4: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-4. Figures for Example SM-4. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
 
 

Example SM-5: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-5. Figures for Example SM-5. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
 
 
 
 
 

x10

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

x10

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

x10

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

x10

1

 u
( !X12 )0.5 ( !X13)0.5( !X11)0.5

x10

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

x10

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

x10

1

 u
   (
!X12 )0    (

!X13)0   (
!X11)0

x10

1

 u
( !X12 )0.5 ( !X13)0.5( !X11)0.5



 

 4 

Example SM-6: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-6. Figures for Example SM-6. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
 
 
 

Example SM-7: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-7. Figures for Example SM-7. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
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Example SM-8: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-8. Figures for Example SM-8. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
 
 
 

Example SM-9: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-9. Figures for Example SM-9. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 8. 
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Example SM-10: 
 

  
(a) (b) 

  
(c) (d) 

Fig. SM-10. Figures for Example SM-10. (a) FOUs and results of implementing: Steps 1–4, (b) Steps 5 and 6, (c) Step 7, and (d) Step 
8. 
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II. More Examples That Illustrate Partitions for WH GT2 Fuzzy Systems 
 
These examples, are in the same order as, and continue the ones in Section I above, and are analogous to 
Examples 3 and 4 in the main body of this paper. They further illustrate the Table II two-step procedure for 
establishing WH GT2 (α )  first-order rule partitions, and the Table IV four-step procedure for establishing 
WH GT2 (α )  second-order rule partitions, but only for  ′α = 0  and  ′α = 0.5 .  
 

Example SM-11: This is our only example for which there are no WH GT2 (α )  second-order rule 
partitions. This is due to there being no partition kinks in the two WH GT2 (α )  first-order rule partitions. 

 

  
(a) (b) 

Fig. SM-11. Figures for Example SM-11 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 .  
There are no WH GT2 (α )  second-order rule partitions for this example. 

 
 

Example SM-12: Observe, in Fig. SM-12, that there are two first-order rule partitions for which

  
NGT 2( ′α )

2 (1| x1) = NGT 2( ′α )
2 (2 | x1) = 4 , and 

  
NGT 2( ′α )

2 ( X1) = 8  for  ′α = 0  and  ′α = 0.5 . Additionally, observe 

that the locations and the widths of the WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and 

 ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-12. Figures for Example SM-12 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

encircled numbers are 
  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along the horizontal axis index the second-order rule partitions within their 

respective first-order rule partition (
  
m

k1
′α ). 
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Example SM-13: Observe, in Fig. SM-13, that there is only one first-order rule partition, for which

  
NGT 2( ′α )

2 (1| x1) = 3  and 
  
NGT 2( ′α )

2 ( X1) = 3  for  ′α = 0  and  ′α = 0.5 . Additionally, observe that the locations 

and the widths of the WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and  ′α = 0.5  are the 
same. 

 

  
(a) (b) 

Fig. SM-13. Figures for Example SM-13 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

encircled numbers are 
  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along the horizontal axis index the second-order rule partitions within their 

respective first-order rule partition (
  
m

k1
′α ). 

 
 

Example SM-14: Observe, in Fig. SM-14, that there are two first-order rule partitions for which

  
NGT 2( ′α )

2 (1| x1) = NGT 2( ′α )
2 (2 | x1) = 5 , and 

  
NGT 2( ′α )

2 ( X1) = 10  for  ′α = 0  and  ′α = 0.5 . Additionally, observe 

that the locations and the widths of the WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and 

 ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-14. Figures for Example SM-14 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

encircled numbers are 
  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along the horizontal axis index the second-order rule partitions within their 

respective first-order rule partition (
  
m

k1
′α ). 
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Example SM-15: Observe, in Fig. SM-15, that there are two first-order rule partitions for which

  
NGT 2( ′α )

2 (1| x1) = NGT 2( ′α )
2 (2 | x1) = 6 , and 

  
NGT 2( ′α )

2 ( X1) = 12  for  ′α = 0  and  ′α = 0.5 . Additionally, observe 

that the locations and the widths of the WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and 

 ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-15. Figures for Example SM-15 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

encircled numbers are 
  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along the horizontal axis index the second-order rule partitions within their 

respective first-order rule partition (
  
m

k1
′α ). 

 
 

Example SM-16: Observe, in Fig. SM-16, that there are two first-order rule partitions for which

  
NGT 2( ′α )

2 (1| x1) = NGT 2( ′α )
2 (2 | x1) = 5 , and 

  
NGT 2( ′α )

2 ( X1) = 10  for  ′α = 0  and  ′α = 0.5 . Additionally, observe 

that the locations and the widths of the WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and 

 ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-16. Figures for Example SM-16 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

encircled numbers are 
  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along the horizontal axis index the second-order rule partitions within their 

respective first-order rule partition (
  
m

k1
′α ). 
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Example SM-17: Observe, in Fig. SM-17, that there are five first-order rule partitions for which, 

  
NGT 2( ′α )

2 (1| x1) = NGT 2( ′α )
2 (5 | x1) = 0 , 

  
NGT 2( ′α )

2 (2 | x1) = 5 , 
  
NGT 2( ′α )

2 (3 | x1) = 2  and 
  
NGT 2( ′α )

2 (4 | x1) = 3 , and, 

  
NGT 2( ′α )

2 ( X1) = 10  for  ′α = 0  and  ′α = 0.5 . Additionally, observe that the locations and the widths of the 

WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and  ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-17. Figures for Example SM-17 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

numbers that appear at the top of each partition (1, 2, …, 5) are   k1
′α . The encircled numbers are 

  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along 

the horizontal axis index the second-order rule partitions within their respective first-order rule partition (
  
m

k1
′α ). 

 
 

Example SM-18: Observe, in Fig. SM-18, that there are five first-order rule partitions for which, 

  
NGT 2( ′α )

2 (1| x1) = 0 , 
  
NGT 2( ′α )

2 (2 | x1) = 6 , 
  
NGT 2( ′α )

2 (3 | x1) = NGT 2( ′α )
2 (5 | x1) = 2  and 

  
NGT 2( ′α )

2 (4 | x1) = 4 , and, 

  
NGT 2( ′α )

2 ( X1) = 14  for  ′α = 0  and  ′α = 0.5 . Additionally, observe that the locations and the widths of the 

WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and  ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-18. Figures for Example SM-18 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

numbers that appear at the top of each partition (1, 2,…, 5) are   k1
′α . The encircled numbers are 

  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along 

the horizontal axis index the second-order rule partitions within their respective first-order rule partition (
  
m

k1
′α ). 
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Example SM-19:
 

Observe, in Fig. SM-19, that there are five first-order rule partitions for which, 

  
NGT 2( ′α )

2 (1| x1) = 0 , 
  
NGT 2( ′α )

2 (2 | x1) = 6 , 
  
NGT 2( ′α )

2 (3 | x1) = NGT 2( ′α )
2 (4 | x1) = 4  and 

  
NGT 2( ′α )

2 (5 | x1) = 2 , and, 

  
NGT 2( ′α )

2 ( X1) = 16  for  ′α = 0  and  ′α = 0.5 . Additionally, observe that the locations and the widths of the 

WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and  ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-19. Figures for Example SM-19 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

numbers that appear at the top of each partition (1, 2,…, 5) are   k1
′α . The encircled numbers are 

  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along 

the horizontal axis index the second-order rule partitions within their respective first-order rule partition (
  
m

k1
′α ). 

 
 

Example SM-20: Observe, in Fig. SM-20, that there are five first-order rule partitions for which, 

  
NGT 2( ′α )

2 (1| x1) = NGT 2( ′α )
2 (5 | x1) = 0 , 

  
NGT 2( ′α )

2 (2 | x1) = 5 , 
  
NGT 2( ′α )

2 (3 | x1) = NGT 2( ′α )
2 (4 | x1) = 4 and, 

  
NGT 2( ′α )

2 ( X1) = 13  for  ′α = 0  and  ′α = 0.5 . Additionally, observe that the locations and the widths of the 

WH GT2 second-order rule partitions of  Xi  at levels  ′α = 0  and  ′α = 0.5  are the same. 
 

  
(a) (b) 

Fig. SM-20. Figures for Example SM-20 WH GT2 ( ′α )  first- and second-order rule partitions when  (a) ′α = 0  and  (b) ′α = 0.5 . The 

numbers that appear at the top of each partition (1, 2,…, 5) are   k1
′α . The encircled numbers are 

  
NGT 2( ′α )

2 (k1
′α | x1) . The numbers along 

the horizontal axis index the second-order rule partitions within their respective first-order rule partition (
  
m

k1
′α ). 
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III. More Examples That Illustrate Which MFs Change (C) or are Unchanged (UC) in WH GT2 ( ′α )  
Second-Order Rule Partitions 

  
These examples (which are in the same order as, and continue the ones in Section II above) further 
illustrate which MFs change or are unchanged in WH GT2 ( ′α )  second-order rule partitions when  ′α = 0  
and  ′α = 0.5 . Each example has a table that is analogous to Table V that summarizes which MFs change 
(C) or are unchanged (UC) as one moves from one WH GT2 (α )  second-order rule partition to the next. 
For each example, one refers to the appropriate figure that is mentioned in each table, and follows the 
procedure that is enumerated in Example 5 in the main body of this paper, by sweeping from the left to the 
right and observing whether or not a LMF or UMF changes or is unchanged as one moves from a second-
order partition to the next. 
 

 
Example SM-21: This is a continuation of Example SM-11. Because there are no WH GT2 (α )  second-

order rule partitions, there are no changes in a LMF or an UMF that occur within in such partitions. This is 
a very strange example, and is examined further in Example 6 in the main body of this paper. 
 

Example SM-22: This is a continuation of Example SM-12; so, use Figs. SM-12a and b to obtain the 
Table SM-1 entries. Examining that table, observe that for  ′α = 0  8 changes occur, whereas for  ′α = 0.5  
12 changes occur, which is a 50% increase in the number of changes. Observe, also, that for  ′α = 0  only 
two times do the changes occur simultaneously for the lower and upper MFs, whereas for  ′α = 0.5 , all of 
the changes occur simultaneously (six times) for the lower and upper MFs. The simultaneously occurring 
pairs are in red. 
 

TABLE SM-1 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-22 

 ′α = 0  (Fig. SM-12a) IT2 fuzzy system: 8C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

1  1→ 2  C C UC UC 
1  2→ 3  C UC UC UC 
1  3→ 4  UC UC C UC 

  k1
0

   
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

2  1→ 2  C UC UC UC 
2  2→ 3  UC UC C UC 
2  3→ 4  UC UC C C 

 ′α = 0.5  (Fig. SM-12b) WH GT2 fuzzy system: 12C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

1  1→ 2  C C UC UC 
1  2→ 3  C C UC UC 
1  3→ 4  UC UC C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X13)0.5  

   UMF( !X13)0.5  

2  1→ 2  C C UC UC 
2  2→ 3  UC UC C C 
2  3→ 4  UC UC C C 
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Example SM-23: This is a continuation of Example SM-13; so, use Figs. SM-13a and b to obtain the 
Table SM-2 entries. Examining that table, observe that for  ′α = 0  4 changes occur, whereas for  ′α = 0.5  8 
changes occur, which is a 100% increase in the number of changes. Observe, also, that for  ′α = 0  no 
changes occur simultaneously for the lower and upper MFs, whereas for  ′α = 0.5 , all of the changes occur 
simultaneously (four times) for the lower and upper MFs. The simultaneously occurring pairs are in red. 
 

TABLE SM-2 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-23 

 ′α = 0  (Fig. SM-13a) fuzzy system: 4C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

1  1→ 2  UC C C UC 
1  2→ 3  C UC UC C 

 ′α = 0.5  (Fig. SM-13b) WH GT2 fuzzy system: 8C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

1  1→ 2  C C C C 
1  2→ 3  C C C C 

 
 

Example SM-24: This is a continuation of Example SM-14; so, use Figs. SM-14a and b to obtain the 
Table SM-3 entries. Examining that table, observe that for  ′α = 0.5  12 changes occur, whereas for 

 ′α = 0.5  16 changes occur, which is a 33.33% increase in the number of changes. Observe, also, that for 
 ′α = 0  only four times do the changes occur simultaneously for the lower and upper MFs, whereas for 
 ′α = 0.5 , all of the changes occur simultaneously (eight times) for the lower and upper MFs. The 
simultaneously occurring pairs are in red. 
 

TABLE SM-3 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-24 

 ′α = 0  (Fig. SM-14a) fuzzy system: 12C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

1  1→ 2  C C UC UC 
1  2→ 3  C UC UC UC 
1  3→ 4  UC UC C UC 
1  4→ 5  UC UC C C 

  k1
0

   
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

2  1→ 2  C C UC UC 
2  2→ 3  C UC UC UC 
2  3→ 4  UC UC C UC 
2  4→ 5  UC UC C C 

 ′α = 0.5  (Fig. SM-14b) WH GT2 fuzzy system: 16C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

1  1→ 2  C C UC UC 
1  2→ 3  C C UC UC 
1  3→ 4  UC UC C C 
1  4→ 5  UC UC C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X13)0.5  

   UMF( !X13)0.5  

2  1→ 2  C C UC UC 
2  2→ 3  C C UC UC 
2  3→ 4  UC UC C C 
2  4→ 5  UC UC C C 
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Example SM-25: This is a continuation of Example SM-15; so, use Figs. SM-15a and b to obtain the 

Table SM-4 entries. Examining that table, observe that for  ′α = 0.5  12 changes occur, whereas for 
 ′α = 0.5  20 changes occur, which is a 67.67% increase in the number of changes. Observe, also, that for 
 ′α = 0  only two times do the changes occur simultaneously for the lower and upper MFs, whereas for 
 ′α = 0.5 , all of the changes occur simultaneously (10 times) for the lower and upper MFs. The 
simultaneously occurring pairs are in red. 
 

TABLE SM-4 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-25 

 ′α = 0  (Fig. SM-15a) fuzzy system: 12C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

1  1→ 2  C UC UC UC 
1  2→ 3  UC C UC UC 
1  3→ 4  C UC UC UC 
1  4→ 5  UC UC C UC 
1  5→ 6  UC UC C C 

  k1
0

   
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

2  1→ 2  C C UC UC 
2  2→ 3  C UC UC UC 
2  3→ 4  UC UC C UC 
2  4→ 5  UC UC UC C 
2  5→ 6  UC UC C UC 

 ′α = 0.5  (Fig. SM-15b) WH GT2 fuzzy system: 20C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

1  1→ 2  C C UC UC 
1  2→ 3  C C UC UC 
1  3→ 4  C C UC UC 
1  4→ 5  UC UC C C 
1  5→ 6  UC UC C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X13)0.5  

   UMF( !X13)0.5  

2  1→ 2  C C UC UC 
2  2→ 3  C C UC UC 
2  3→ 4  UC UC C C 
2  4→ 5  UC UC C C 
2  5→ 6  UC UC C C 
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Example SM-26: This is a continuation of Example SM-16; so, use Figs. SM-16a and b to obtain the 

Table SM-5 entries. Examining that table, observe that for  ′α = 0.5  10 changes occur, whereas for 
 ′α = 0.5  16 changes occur, which is a 60% increase in the number of changes. Observe, also, that for 
 ′α = 0  only two times do the changes occur simultaneously for the lower and upper MFs, whereas for 
 ′α = 0.5 , all of the changes occur simultaneously (eight times) for the lower and upper MFs. The 
simultaneously occurring pairs are in red. 
 

TABLE SM-5 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-26 

 ′α = 0  (Fig. SM-16a) fuzzy system: 12C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

1  1→ 2  UC C UC UC 
1  2→ 3  C UC UC UC 
1  3→ 4  UC UC C UC 
1  4→ 5  UC UC C C 

  k1
0

   
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

2  1→ 2  C C UC UC 
2  2→ 3  C UC UC UC 
2  3→ 4  UC UC C UC 
2  4→ 5  UC UC UC C 

 ′α = 0.5  (Fig. SM-16b) WH GT2 fuzzy system: 16C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

1  1→ 2  C C UC UC 
1  2→ 3  C C UC UC 
1  3→ 4  UC UC C C 
1  4→ 5  UC UC C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X13)0.5  

   UMF( !X13)0.5  

2  1→ 2  C C UC UC 
2  2→ 3  C C UC UC 
2  3→ 4  UC UC C C 
2  4→ 5  UC UC C C 
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Example SM-27: This is a continuation of Example SM-17; so, use Figs. SM-17a and b to obtain the 
Table SM-6 entries. Notice, from Figs. SM-17a, b that the first and fifth first-order rule partitions have no 
second-order rule partitions, which is why   k1

′α = 1  and   k1
′α = 5  do not appear in this table. Examining Table 

SM-6, observe that for  ′α = 0.5  10 changes occur, whereas for  ′α = 0.5  14 changes occur, which is a 40% 
increase in the number of changes. Observe, also, that for  ′α = 0  only 3 times do the changes occur 
simultaneously for the lower and upper MFs, whereas for  ′α = 0.5 , all of the changes occur simultaneously 
(six times) for the lower and upper MFs. The simultaneously occurring pairs are in red. 
 

TABLE SM-6 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-27 

 ′α = 0  (Fig. SM-17a) fuzzy system: 10C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

2  1→ 2  C C UC UC 
2  2→ 3  UC UC C UC 
2  3→ 4  C UC UC UC 
2  4→ 5  UC UC C C 

  k1
0

   
m

k1
0    

   LMF( !X12 )0  
   UMF( !X12 )0  

3  1→ 2    C C 

  k1
0  

  
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

4  1→ 2  UC UC C UC 
4  2→ 3  C UC UC UC 

 ′α = 0.5  (Fig. SM-17b) WH GT2 fuzzy system: 14C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

2  1→ 2  C C UC UC 
2  2→ 3  UC UC C C 
2  3→ 4  C C UC UC 
2  4→ 5  UC UC C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X13)0.5  

   UMF( !X13)0.5  

3  1→ 2    C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

4  1→ 2  UC UC C C 
4  2→ 3  C C UC UC 
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Example SM-28: This is a continuation of Example SM-18; so, use Figs. SM-18a and b to obtain the 
Table SM-7 entries. Notice, from Figs. SM-18a, b that the first first-order rule partitions has no second-
order rule partitions, which is why   k1

′α = 1  does not appear in this table. Examining Table SM-7, observe 
that for  ′α = 0.5  12 changes occur, whereas for  ′α = 0.5  18 changes occur, which is a 50% increase in the 
number of changes. Observe, also, that for  ′α = 0  only 2 times do the changes occur simultaneously for the 
lower and upper MFs, whereas for  ′α = 0.5 , all of the changes occur simultaneously (six times) for the 
lower and upper MFs. The simultaneously occurring pairs are in red. 
 

TABLE SM-7 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-28 

 ′α = 0  (Fig. SM-18a) fuzzy system: 10C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

2  1→ 2  C UC UC UC 
2  2→ 3  UC C UC UC 
2  3→ 4  UC UC C UC 
2  4→ 5  C UC UC UC 
2  5→ 6  UC UC C C 

  k1
0

   
m

k1
0    

   LMF( !X12 )0  
   UMF( !X12 )0  

3  1→ 2    C C 

  k1
0  

  
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

4  1→ 2  C UC UC UC 
4  2→ 3  UC UC C UC 
4  3→ 4  UC UC UC C 

  k1
0  

  
m

k1
0    

   LMF( !X13)0  
   UMF( !X13)0  

5  1→ 2
 

  C UC 

 ′α = 0.5  (Fig. SM-18b) WH GT2 fuzzy system: 14C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

2  1→ 2  C C UC UC 
2  2→ 3  UC UC UC UC 
2  3→ 4  UC UC C C 
2  4→ 5  C C UC UC 
2  5→ 6  UC UC C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X13)0.5  

   UMF( !X13)0.5  

3  1→ 2    C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X12 )0.5  

   UMF( !X12 )0.5  

4  1→ 2  C C UC UC 
4  2→ 3  UC UC C C 
4  3→ 4  UC UC C C 

  k1
0.5  

  
m

k1
0.5    

   LMF( !X12 )0.5  
   UMF( !X12 )0.5  

5 
 1→ 2    C UC 
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Example SM-29: This is a continuation of Example SM-19; so, use Figs. SM-19a and b to obtain the 
Table SM-8 entries. Notice, from Figs. SM-19a, b that the first first-order rule partitions has no second-
order rule partitions, which is why   k1

′α = 1  does not appear in this table. Examining Table SM-8, observe 
that for  ′α = 0.5  12 changes occur, whereas for  ′α = 0.5  24 changes occur, which is a 100% increase in 
the number of changes. Observe, also, that for  ′α = 0  only at no time do the changes occur simultaneously 
for the lower and upper MFs, whereas for  ′α = 0.5 , all of the changes occur simultaneously (12 times) for 
the lower and upper MFs. The simultaneously occurring pairs are in red. 
 

TABLE SM-8 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-29 

 ′α = 0  (Fig. SM-19a) fuzzy system: 12C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

2  1→ 2  C UC UC UC 
2  2→ 3  UC C UC UC 
2  3→ 4  UC UC C UC 
2  4→ 5  C UC UC UC 
2  5→ 6  UC UC UC C 

  k1
0

   
m

k1
0    

   LMF( !X12 )0  
   UMF( !X12 )0  

3  1→ 2    C UC 
3  2→ 3    C UC 
3  3→ 4    UC C 

  k1
0  

  
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

4  1→ 2  C UC UC UC 
4  2→ 3  UC UC C UC 
4  3→ 4  UC UC UC C 

  k1
0  

  
m

k1
0    

   LMF( !X13)0  
   UMF( !X13)0  

5  1→ 2
 

  C UC 

 ′α = 0.5  (Fig. SM-19b) WH GT2 fuzzy system: 24C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

2  1→ 2  C C UC UC 
2  2→ 3  C C UC UC 
2  3→ 4  UC UC C C 
2  4→ 5  C C UC UC 
2  5→ 6  UC UC C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X13)0.5  

   UMF( !X13)0.5  

3  1→ 2    C C 
3  2→ 3    C C 
3  3→ 4    C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X12 )0.5  

   UMF( !X12 )0.5  

4  1→ 2  C C UC UC 
4  2→ 3  UC UC C C 
4  3→ 4  UC UC C C 

  k1
0.5  

  
m

k1
0.5    

   LMF( !X12 )0.5  
   UMF( !X12 )0.5  

5 
 1→ 2    C UC 
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Example SM-30: This is a continuation of Example SM-20; so, use Figs. SM-20a and b to obtain the 
Table SM-9 entries. Notice, from Figs. SM-20a, b that the first and fifth first-order rule partitions have no 
second-order rule partitions, which is why   k1

′α = 1  and   k1
′α = 5  do not appear in this table. Examining Table 

SM-9, observe that for  ′α = 0.5  10 changes occur, whereas for  ′α = 0.5  20 changes occur, which is a 
100% increase in the number of changes. Observe, also, that for  ′α = 0  only at no time do the changes 
occur simultaneously for the lower and upper MFs, whereas for  ′α = 0.5 , all of the changes occur 
simultaneously (10 times) for the lower and upper MFs. The simultaneously occurring pairs are in red. 
 

TABLE SM-9 
LMF AND UMF CHANGED (C) OR UNCHANGED (UC) FOR EXAMPLE SM-30 

 ′α = 0  (Fig. SM-20a) fuzzy system: 12C’s 

  k1
0  

  
m

k1
0  

   LMF( !X11)0  
   UMF( !X11)0  

   LMF( !X12 )0  
   UMF( !X12 )0  

2  1→ 2  UC C UC UC 
2  2→ 3  UC UC C UC 
2  3→ 4  C UC UC UC 
2  4→ 5  UC UC UC C 

  k1
0

   
m

k1
0    

   LMF( !X12 )0  
   UMF( !X12 )0  

3  1→ 2    C UC 
3  2→ 3    C UC 
3  3→ 4    UC C 

  k1
0  

  
m

k1
0     LMF( !X12 )0  

   UMF( !X12 )0  
   LMF( !X13)0  

   UMF( !X13)0  

4  1→ 2  C UC UC UC 
4  2→ 3  UC UC C UC 
4  3→ 4  UC UC UC C 

 ′α = 0.5  (Fig. SM-20b) WH GT2 fuzzy system: 24C’s 

  k1
0.5  

  
m

k1
0.5     LMF( !X11)0.5  

   UMF( !X11)0.5  
   LMF( !X12 )0.5  

   
UMF( !X12 )0.5  

2  1→ 2  C C UC UC 
2  2→ 3  UC UC C C 
2  3→ 4  C C UC UC 
2  4→ 5  UC UC C C 

  k1
0.5  

  
m

k1
0.5    

   LMF( !X12 )0.5  
   UMF( !X12 )0.5  

3  1→ 2    C C 
3  2→ 3    C C 
3  3→ 4    C C 

  k1
0.5  

  
m

k1
0.5     LMF( !X12 )0.5  

   UMF( !X12 )0.5  
   LMF( !X12 )0.5  

   UMF( !X12 )0.5  

4  1→ 2  C C UC UC 
4  2→ 3  UC UC C C 
4  3→ 4  UC UC C C 
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IV. Data for WH GT2 FPID Controller Novelty Partitions 
 

TABLE SM-10 
RANGES, RULES, UMFS, LMFS AND FIRING INTERVALS IN THE FOUR REGIONS (SEE FIG. 8) 

 Region 1 Region 2 Region 3 Region 4 
Ranges E ∈[−1,0]

ΔE ∈[-1,0]

 

E ∈[−1,0] 
ΔE ∈[0,1]

 

E ∈[0,1] 
ΔE ∈[0,1]

 

E ∈[0,1] 
ΔE ∈[-1,0]

 
Rules 

 

!RZ
1 : ( !NE , !NΔE )→−1
!RZ
2 : ( !NE , !ZΔE )→−0.5
!RZ
4 : ( !ZE , !NΔE )→−0.5
!RZ
5 : ( !ZE , !ZΔE )→ 0

 

 

!RZ
2 : ( !NE , !ZΔE )→−0.5
!RZ
3 : ( !NE , !PΔE )→ 0
!RZ
5 : ( !ZE , !ZΔE )→ 0
!RZ
6 : ( !ZE , !PΔE )→ 0.5

 

 

!RZ
5 : ( !ZE , !ZΔE )→ 0
!RZ
6 : ( !ZE , !PΔE )→ 0.5
!RZ
8 : ( !PE , !ZΔE )→ 0.5
!RZ
9 : ( !PE , !PΔE )→1

 

 

!RZ
4 : ( !ZE , !NΔE )→−0.5
!RZ
5 : ( !ZE , !ZΔE )→ 0
!RZ
7 : ( !PE , !NΔE )→ 0
!RZ
8 : ( !PE , !ZΔE )→ 0.5

 

FOU UMFs 

		 

UMF( !N
E
)0 = −E

UMF( !Z
E
)0 = E +1

UMF( !NΔE )0 = −ΔE
UMF( !ZΔE )0 = ΔE +1

 

		 

UMF( !N
E
)0 = −E

UMF( !Z
E
)0 = E +1

UMF( !ZΔE )0 =1−ΔE
UMF( !PΔE )0 = ΔE

 

		 

UMF( !Z
E
)0 =1−E

UMF( !P
E
)0 = E

UMF( !ZΔE )0 =1−ΔE
UMF( !PΔE )0 = ΔE

 

		 

UMF( !Z
E
)0 =1−E

UMF( !P
E
)0 = E

UMF( !NΔE )0 = −ΔE
UMF( !ZΔE )0 =1+ΔE

 

FOU LMFs 

		 

LMF( !N
E
)0 = −0.2E

LMF( !Z
E
)0 =0.9(E +1)

LMF( !NΔE )0 = −0.3ΔE
LMF( !ZΔE )0 =0.9(ΔE +1)

 

		 

LMF( !N
E
)0 = −0.2E

LMF( !Z
E
)0 =0.9(E +1)

LMF( !ZΔE )0 =0.9(1−ΔE)
LMF( !PΔE )0 =0.3ΔE

 

		 

LMF( !Z
E
)0 =0.9(1−E)

LMF( !P
E
)0 =0.2E

LMF( !ZΔE )0 =0.9(1−ΔE)
LMF( !PΔE )0 =0.3ΔE

 

		 

LMF( !Z
E
)0 =0.9(1−E)

LMF( !P
E
)0 =0.2E

LMF( !NΔE )0 = −0.3ΔE
LMF( !ZΔE )0 =0.9(1+ΔE)

 

Horizontal-
slice LMF 
and UMF 

   LMF( !A)α = LMF( !A)0 +αw[UMF( !A)α − LMF( !A)α ]

    UMF( !A)α =UMF( !A)0 −α (1− w)[UMF( !A)α − LMF( !A)α ]

 
  !A is a generic GT2 FS

 
Firing 
intervals 

Region 1 

   

!RZ
1

fα
1 =UMF( !N E )α ⋅UMF( !NΔE )α

fα
1 = LMF( !N E )α ⋅ LMF( !NΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
2

fα
2 =UMF( !N E )α ⋅UMF( !ZΔE )α

fα
2 = LMF( !N E )α ⋅ LMF( !ZΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
4

fα
4 =UMF( !ZE )α ⋅UMF( !NΔE )α

fα
4 = LMF( !ZE )α ⋅ LMF( !NΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
5

fα
5 =UMF( !ZE )α ⋅UMF( !ZΔE )α

fα
5 = LMF( !ZE )α ⋅ LMF( !ZΔE )α

⎧
⎨
⎪

⎩⎪

 

Region 2 

   

!RZ
2

fα
2 =UMF( !N E )α ⋅UMF( !ZΔE )α

fα
2 = LMF( !N E )α ⋅ LMF( !NΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
3

fα
3 =UMF( !N E )α ⋅UMF( !PΔE )α

fα
3 = LMF( !N E )α ⋅ LMF( !PΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
5

fα
5 =UMF( !ZE )α ⋅UMF( !ZΔE )α

fα
5 = LMF( !ZE )α ⋅ LMF( !NΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
6

fα
6 =UMF( !ZE )α ⋅UMF( !PΔE )α

fα
6 = LMF( !ZE )α ⋅ LMF( !PΔE )α

⎧
⎨
⎪

⎩⎪

 

Region 3 

   

!RZ
5

fα
5 =UMF( !ZE )α ⋅UMF( !ZΔE )α

fα
5 = LMF( !ZE )α ⋅ LMF( !ZΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
6

fα
6 =UMF( !ZE )α ⋅UMF( !PΔE )α

fα
6 = LMF( !ZE )α ⋅ LMF( !PΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
8

fα
8 =UMF( !PE )α ⋅UMF( !ZΔE )α

fα
8 = LMF( !PE )α ⋅ LMF( !ZΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
9

fα
9 =UMF( !PE )α ⋅UMF( !PΔE )α

fα
9 = LMF( !PE )α ⋅ LMF( !PΔE )α

⎧
⎨
⎪

⎩⎪

 

Region 4 

   

!RZ
4

fα
4 =UMF( !ZE )α ⋅UMF( !NΔE )α

fα
4 = LMF( !ZE )α ⋅ LMF( !NΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
5

fα
5 =UMF( !ZE )α ⋅UMF( !ZΔE )α

fα
5 = LMF( !ZE )α ⋅ LMF( !ZΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
7

fα
7 =UMF( !PE )α ⋅UMF( !NΔE )α

fα
7 = LMF( !PE )α ⋅ LMF( !NΔE )α

⎧
⎨
⎪

⎩⎪

!RZ
8

fα
8 =UMF( !PE )α ⋅UMF( !ZΔE )α )

fα
8 = LMF( !PE )α ⋅ LMF( !ZΔE )α

⎧
⎨
⎪

⎩⎪

 

 
• Ranges can be deduced from Fig. 8. 

• Rules can be created from Table VI. 
• FOU UMFs and LMFs can be deduced from Fig. 8. 
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• Formulas for the horizontal-slice LMF and UMF are in (1). 

• Formulas for the horizontal-slice firing intervals are for each region’s rules, and use (5) when: 
p = 2 , E  is  

!F1
l  and ΔE  is  

!F2
l ; they also use the product t-norm.  

 
TABLE SM-11 

		 yl ,α
COS AND 		 yr ,α

COS  ITERATIONS IN THE FOUR REGIONS. IF 
  
yl ,α

( j )    ( j ∈{0,1,...,4})  IS THE WINNER, THEN  L = j , AND IF 
  
yr ,α

(k )  

  (k ∈{0,1,...,4})  IS THE WINNER, THEN  R = k  (SEE FIGS. 9 AND 10) 

Region 		 yl ,α
COS  iterations 		 yr ,α

COS  iterations 

1 

		
y
l ,α
(0) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  
		
y
l ,α
(1) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  
		
y
r ,α
(0) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  
		
y
r ,α
(1) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  

		
y
l ,α
(2) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  
		
y
l ,α
(3) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  
		
y
r ,α
(2) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  
		
y
r ,α
(3) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  

		
y
l ,α
(4) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  
		
y
r ,α
(4) =

− fα
1 −0.5 fα2 −0.5 fα4
fα
1 + fα

2 + fα
4 + fα

5  

2 

		
y
l ,α
(0) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  
		
y
l ,α
(1) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  
		
y
r ,α
(0) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  
		
y
r ,α
(1) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  

		
y
l ,α
(2) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  
		
y
l ,α
(3) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  
		
y
r ,α
(2) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  
		
y
r ,α
(3) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  

		
y
l ,α
(4) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  
		
y
r ,α
(4) =

−0.5 fα2 +0.5 fα6
fα
2 + fα

3 + fα
5 + fα

6  

3 

		
y
l ,α
(0) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  
		
y
l ,α
(1) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  
		
y
r ,α
(0) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  
		
y
r ,α
(1) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  

		
y
l ,α
(2) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  
		
y
l ,α
(3) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  
		
y
r ,α
(2) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  
		
y
r ,α
(3) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  

		
y
l ,α
(4) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  
		
y
r ,α
(4) =

0.5 fα6 +0.5 fα8 + fα9
fα
5 + fα

6 + fα
8 + fα

9  

4 

		
y
l ,α
(0) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  
		
y
l ,α
(1) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  
		
y
r ,α
(0) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  
		
y
r ,α
(1) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  

		
y
l ,α
(2) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  
		
y
l ,α
(3) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  
		
y
r ,α
(2) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  
		
y
r ,α
(3) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  

		
y
l ,α
(4) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  
		
y
r ,α
(4) =

−0.5 fα4 +0.5 fα8
fα
4 + fα

5 + fα
7 + fα

8  

 
To obtain the formulas in this table: 

• 		 yl ,α
( j ) : Use (6), the numbering of the fired rules in each region (from Table SM-10), and the crisp 

rule consequents (see “Rules” in Table SM-10), which play the role of the 		 cl(
!Gα
i )  in (6). 

• 		 yr ,α
(k ) : Use (7), the numbering of the fired rules in each region (from Table SM-10), and the crisp 

rule consequents (see “Rules” in Table SM-10), which play the role of the 		 cr(
!Gα
i )  in (7). Note that 

because the rule consequents are crisp, 		 cr(
!Gα
i )= c

l
( !Gα

i ) .  




