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Explaining the Performance Potential of Rule-Based
Fuzzy Systems as a Greater Sculpting of the
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Abstract—This paper provides some new and novel application-
independent perspectives on why improved performance usually
occurs as one goes from crisp, to type-1 (T1), and to interval type-
2 (IT2) fuzzy systems, by introducing three kinds of partitions:
(1) Uncertainty partitions that let us distinguish T1 fuzzy sets from
crisp sets, and IT2 fuzzy sets from T1 fuzzy sets; (2) First-and
second-order rule partitions that are direct results of uncertainty
partitions, and are associated with the number of rules that fire in
different regions of the state space, and, the changes in their math-
ematical formulae within those regions; and (3) Novelty partitions
that can only occur in an IT2 fuzzy system that uses type-reduction.
Rule and novelty partitions sculpt the state space into hyperrect-
angles within each of which resides a different nonlinear function.
It is the author’s conjecture that the greater sculpting of the state
space by a T1 fuzzy system lets it outperform a crisp system, and
the even greater sculpting of the state space by an IT2 fuzzy system
lets it outperform a T1 fuzzy system. The latter can occur even
when the T1 and IT2 fuzzy systems are described by the same
number of parameters.

Index Terms—Interval type-2 (IT2) fuzzy system, novelty parti-
tions, rule-based fuzzy systems, rule partitions, type-1 (T1) fuzzy
system, uncertainty partitions.

I. INTRODUCTION

S INCE the seminal work of [57], a very important appli-
cation for fuzzy sets has been rule-based fuzzy systems.

When such systems use type-1 (T1) [interval type-2 (IT2) or
general type-2 (GT2)] fuzzy sets they are called T1 [IT2 or
GT2] fuzzy systems. Thousands of articles (including books)
have been published about such fuzzy systems,1 and invariably
they demonstrate that better performance2 [as measured by an
application’s performance metric(s)] is achieved by:
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1Most are about T1 fuzzy systems, followed by IT2 fuzzy systems, and more

recently there are some on GT2 fuzzy systems. Examples of such publications
are: [1], [9]–[11], [13], [16]–[18], [26], [33] (this contains 83 reprinted papers),
[34], [37]–[39], and [56].

2Interpretability, as a performance metric, is outside of the scope of this paper.

1) a T1 fuzzy system over a nonfuzzy system;
2) an IT2 fuzzy system over a T1 fuzzy system; and
3) a GT2 fuzzy system over an IT2 fuzzy system.
A crucial question is: Why does improved performance occur

as one goes from crisp, to T1, to IT2, to GT2 fuzzy systems?
Some possible earlier answers to this question are (as para-

phrased by this author):
1) A fuzzy system is inherently nonlinear (NL) and so it

should perform better than a linear system, because most
real-world systems are NL. But, there can be many kinds
of NL systems and so what is so special about the NL
nature of a fuzzy system? Assessing nonlinearity is not
an easy task, but there have been attempts at performing
it for estimators and stochastic systems [31], [28], cryp-
tographic functions such as hash functions, block ciphers,
and stream ciphers [6], and open-loop dynamical systems
[46], [19]. There is also a study to assess the nonlinearity
of fuzzy (PID) controllers that compared them to their
nonfuzzy counterparts [20]. Nevertheless, the nature of
nonlinearity of fuzzy systems has to be further studied to
answer the above question.

2) A fuzzy system easily achieves smooth transitions across
its (input) state space because of its overlapping mem-
bership functions (MFs) [53], i.e., its variable structure,
something that cannot be achieved (easily or at all) us-
ing a nonfuzzy system. But, how does one quantify this?
Again, there have been studies to demonstrate the benefit
of smooth NL approximations [14] over linear approxima-
tions, and on the smoothness of approximations that vary
in form in subdomains of the input space [12] but serious
studies are needed to quantify this for fuzzy systems.

3) A T1 fuzzy system usually has more design degrees of
freedom than does a nonfuzzy system, because of the
parameters that are needed to define T1 MFs. An IT2
(GT2) fuzzy system has more design degrees of freedom
than does a T1 (IT2) fuzzy system because it takes more
parameters to define an IT2 (GT2) fuzzy set than it does to
define a T1 (IT2) fuzzy set. Some recent studies [7], [44],
[8] indicate that it is not the number of MF parameters that
lead to improved performance; rather, there is something
inherently different about the ways that an IT2 (GT2)
fuzzy system handles MF uncertainties that leads to this.

Two earlier works that provide some interesting and new in-
sights about why improved performance may occur for an IT2

1063-6706 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6377-2452


MENDEL: EXPLAINING THE PERFORMANCE POTENTIAL OF RULE-BASED FUZZY SYSTEMS AS A GREATER SCULPTING OF THE STATE 2363

fuzzy system over a T1 fuzzy system are [55] and [36]. The
former is based on observations from a fuzzy logic control ap-
plication and uses the novel concept of equivalent T1 fuzzy sets,
whereas the latter is based on one kind of an IT2 fuzzy system
and uses an expansion of that system about a T1 fuzzy system.
A key thought from the latter work is: “ . . . a traditional com-
parative performance analysis begins with a specific application
and is performed entirely within the context of that application,
with each application requiring its own performance analysis.
[The author’s] contention is that there should be a common com-
ponent to all performance analyses, after which the rest of the
performance analysis is application-dependent.”

This paper provides new and novel answers to the above cru-
cial question that are in the spirit of “a common component to
all performance analyses,” but only for T1 and IT2 fuzzy sys-
tems, leaving the extension of its results for GT2 fuzzy systems
as future research. In a nutshell, it will be shown that a T1 fuzzy
system can sculpt its state space with greater variability than a
crisp rule-based system can, and in ways that cannot be accom-
plished by the crisp system, and that an IT2 fuzzy system (that
has the same number of rules as the T1 fuzzy system) can sculpt
the state space with even greater variability, and in ways that
cannot be accomplished by a T1 fuzzy system. This approach
may provide tools for characterizing and mathematically quan-
tifying the nature of the “excess nonlinearity” provided by IT2
fuzzy systems in the design process. It will lead to the following
conjecture: it is the greater sculpting of the state space that lets
an IT2 fuzzy system usually outperform a T1 fuzzy system, and
a T1 fuzzy system usually outperform a crisp system.

II. BACKGROUND

A. Uncertainty Partitions

In a rule-based system, each antecedent is a term that is as-
sociated with a linguistic variable. If each antecedent, xi , (i =
1, . . . , p) is described by Qi linguistic terms Txi = {Xij}Qi

j=1 ,
then it may be said that these terms partition xi . Partitions come
in different guises.3 Four different kinds of partitions of xi = x
are depicted in Fig. 1. The horizontal axis of each figure is x
(e.g., temperature, price of stock on a particular day, blood pres-
sure, etc.) and the vertical axis of this figure is the degree of
belonging of each x in a partition, also called the membership
of x in a partition.

Definition 1: A crisp partition [as in Fig. 1(a)] of the real
variable x comprises nonoverlapping adjacent regions that are
intervals of real numbers, where the degree of membership in
each region is 1. They can be described mathematically using
classical (crisp) sets.

In Fig. 1(a), each of the intervals, e.g., [0, a], (a, b], etc., is a
crisp partition, and a given value of x can only reside in one
of them with full membership of 1. Additionally, each crisp
partition is associated with a linguistic term, e.g., V L or L, etc.,

3The partitions in this paper are not the pioneering fuzzy partitions introduced
in [43], which have received considerable attention in the literature, e.g., [2],
[5], [21].

Fig. 1. Four kinds of partitions: (a) crisp, (b) first-order uncertainty, (c)
second-order uncertainty with uniform weighting, and (d) second-order uncer-
tainty with nonuniform weighting. Wi denotes the ith word, where W1 = V L,
W2 = L, W3 = M, W4 = H , and W5 = V H .

and there is always a sharp transition from one term to the next
at x = a, b, c, or d.

Crisp partitions serve us well in some situations, but they do
not permit any uncertainty about a, b, c, or d. Such uncertainty
can be expressed by letting all numbers about which there is
uncertainty become an interval of numbers, e.g., a → [al , ar ],
b → [bl , br ], etc.

Definition 2: A first-order uncertainty partition [as in
Fig. 1(b)] of the real variable, x, comprises overlapping in-
tervals, where one is absolutely certain about where the overlap
begins and ends, so that the degree of membership in each region
of overlap is a real number that is an element of [0,1]. They can
be described mathematically using classical (T1) fuzzy sets.

First-order uncertainty partitions lead to smooth transitions
from one region (linguistic term) to another, which is very differ-
ent from the sharp transitions that occur when crisp partitions are
used. Such partitions serve us well in many situations, but they
do not allow for any uncertainty about the interval end-points,
which can once again be expressed by letting all numbers about
which there is uncertainty become an interval of numbers, e.g.,
a → [[al1 , al2 ], [ar1 , ar2 ]], etc.

Definition 3: A second-order uncertainty partition [as in
Fig. 1(c)] of the real-variable x comprises overlapping inter-
vals where one is unsure about where the overlap begins and
ends, so that the degree of membership in each region of overlap
is an interval of real numbers that is a subset of [0, 1].

Definition 4: Each region in X ×[0, 1], in which the degree
of membership is an interval of real numbers, is called the
footprint of uncertainty (FOU) of Wi [35], [37].

Definition 5: A uniformly (nonuniformly) shaded FOU [as
in Fig. 1(c) and (d)] denotes a uniform (nonuniform) weight-
ing of all of its points, and is called a uniformly (nonuni-
formly) weighted second-order uncertainty partition. Uniformly
(nonuniformly) weighted partitions can be described mathemat-
ically using IT2 (GT2) fuzzy sets.

Readers are no doubt already anticipating additional levels
of uncertainty, along the lines just given, e.g., a → [[[al1 l ,
al1r ], [al2 l , al2r ]], [[ar1 l , ar1r ], [ar2 l , ar2r ]]]; however, [[[al1 l ,
al1r ], [al2 l , al2r ]], [[ar1 l , ar1r ], [ar2 l , ar2r ]]] is equivalent to
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Fig. 2. Fuzzy system.

[[al1 l , al2r ], [ar1 l , ar2r ]] so, a second-order uncertainty model
suffices.4

B. Rule-Based Fuzzy Systems

A rule-based fuzzy system (fuzzy system, for short) contains
four components—rules, fuzzifier, inference (engine), and out-
put processor—that are interconnected as shown in Fig. 2 (e.g.,
[32], [37], [22], [23]). Once the rules have been established,
the fuzzy system can be viewed as a mapping from inputs to
outputs, and this mapping can be expressed quantitatively as
y = f(x). Brief discussions are given next only for those parts
of this system that are needed in the rest of this paper.

C. Rules

Suppose that a fuzzy system has p inputs x1 ∈ X1 , . . . , xp ∈
Xp , and one output y ∈ Y , where xi is described by Qi lin-
guistic terms Txi = {Xij}Qi

j=1 , and y is either described by Qy

linguistic terms, Ty = {Yj}
Qy

j=1 , or by a function g(x1 , . . . , xp).
Definition 6: The structures of the antecedents of an lth

generic Zadeh rule (Rl
Z ) [57] and TSK rule (Rl

TSK ) [47],
[45] for a fuzzy system are the same, namely (l = 1, . . . ,M)
′′x1 is F l

1 and . . . and xp is F l
p
′′ (where F l

i ∈ Txi ); but, the
consequent of Rl

Z is ′′y is Gl ′′ and the consequent of Rl
TSK is

′′y is gl(x1 , . . . , xp).′′ In a T1 (IT2) fuzzy system, F l
j and Gl

are T1 fuzzy sets (F l
j → F̃ l

j and Gl → G̃l , where F̃ l
j and G̃l are

IT2 fuzzy sets). The rules Rl
Z (Rl

TSK ) are used in a Mamdani
(TSK) fuzzy system [32] ([45], [47]).

Because Gl ∈ Ty is a fuzzy set, it is described by its MF
µGl (y). In Rl

TSK , although y does not seem to be a fuzzy set,
it can be modeled as a fuzzy singleton Gl , so Rl

TSK can be
made to resemble Rl

Z , e.g., for T1 fuzzy sets, µGl (y) ≡ 1 when
y = gl(x) and µGl (y) ≡ 0 otherwise. In this way it is possible
to unify fuzzy systems that use either Rl

Z or Rl
TSK .

D. Firing Level (Interval) in a T1 (IT2) Fuzzy System

For a T1 (IT2) fuzzy system, T1 (IT2) fuzzy logic principles
are used to map T1 (IT2) fuzzy input sets in X1 ×· · ·×Xp ,
that flow through a set of IF-THEN rules, into a T1 (IT2) fuzzy
output set in Y . The focus of this paper is primarily on the

4It is conceivable that uncertainty about the filling of the FOU could lead
to higher than second-order uncertainty about the FOU, but this is beyond the
scope of this paper.

interaction of each T1 (IT2) input with its respective T1 (IT2)
antecedent, which then collectively leads to a firing level (inter-
val) that is the same for both Mamdani and TSK T1 (IT2) fuzzy
systems. To keep things as simple as possible, we assume sin-
gleton fuzzification, although the approach that is taken herein
is conceptually the same regardless of the nature of the fuzzifier.

It is well known that, for T1 (IT2) singleton fuzzification,
when x = x′ the firing level (interval) f l(x′) ([f l(x′), f̄ l(x′)])
for each T1 (IT2) rule (l = 1, . . . , M) is (e.g., [29], [35], [37])

{
f l(x′) = Tp

i=1µF l
i
(x′

i)
[f l(x′), f̄ l(x′)] = [Tp

i=1µF̃ l
i
(x′

i), T p
i=1 µ̄F̃ l

i
(x′

i)]
. (1)

In (1), T denotes a t-norm, usually the minimum or product,
and µ

F̃ l
i

and µ̄F̃ l
i

denote the lower and upper MFs (LMFs and

UMFs) of F̃ l
i , each of which is a T1 fuzzy set that bounds the

FOU of the IT2 fuzzy set. Observe that in (1), for a T1 fuzzy
system x′ is processed once nonlinearly, but for an IT2 fuzzy
system it is processed twice nonlinearly, once using LMFs and
once using UMFs.

Definition 7: In a T1 (IT2) fuzzy system, a firing level (in-
terval) is said to contribute to its output only if it is nonzero.
In a T1 fuzzy system, it is the T1 MFs of rule antecedents that
establish exactly where this occurs in X1 ×X2 ×· · ·×Xp ,
and it occurs when the T1 MFs of all antecedents are simul-
taneously nonzero. In an IT2 fuzzy system, it is the UMFs of
rule antecedent FOUs that establish exactly where this occurs
in X1 ×X2 ×· · ·×Xp , and it occurs when the UMF of all
antecedent FOUs are simultaneously nonzero.5

E. Type-Reduction (TR) and Defuzzification

In an IT2 fuzzy system, after the firing intervals have been
computed there can be different ways to use them to obtain
its final output (e.g., [24], [40], [4]). This paper focuses on
doing this by using center-of sets TR (COS TR) followed by
defuzzification, because COS TR is arguably the most widely
used TR. However, the results in this paper are also applicable
to height TR and centroid TR.

Definition 8: COS TR in an IT2 fuzzy system maps mixtures
of the lower and upper values of the firing intervals into yCOS

l
and yCOS

r , i.e., in an IT2 Mamdani fuzzy system (similar equa-
tions occur for normalized A2-C0 and A2-C1 IT2 TSK fuzzy
systems [37, Secs. 9.6.4.2 and 9.6.4.4])

yCOS
l (x′) =

∑L
i=1 cl(G̃i)f̄ i(x′) +

∑M
i=L+1 cl(G̃i)fi(x′)

∑L
i=1 f̄ i(x′) +

∑M
i=L+1 fi(x′)

(2)

yCOS
r (x′) =

∑R
i=1 cr (G̃i)fi(x′) +

∑M
i=R+1 cr (G̃i)f̄ i(x′)

∑R
i=1 fi(x′) +

∑M
i=R+1 f̄ i(x′)

.

(3)

In (2) and (3), cl(G̃i) and cr (G̃i) are the left and right end-
points of the centroid of the IT2 rule-consequent G̃i , and the

5If the UMF is zero then the LMF must also be zero because a LMF can never
be larger than the UMF.
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switch points L and R have to be computed iteratively, which can
be done by using many different published algorithms, the most
widely used being KM [25], EKM [52], and EIASC [54]. The
defuzzified output of the IT2 Mamdani fuzzy system, yCOS(x′),
is computed as

yCOS(x′) = [yCOS
l (x′) + yCOS

r (x′)]/2. (4)

Regarding the nonlinear nature6 of this IT2 fuzzy system,
when (2) and (3) are substituted into (4), one finds that f i(x′) and
f̄ i(x′) are combined quadratically, including self- and cross-
product terms. In a T1 fuzzy system that uses COS defuzzifica-
tion, firing levels are only combined linearly.

III. RULE PARTITIONS

This section defines and illustrates first-order and second-
order rule partitions because they help us to understand what is
happening in a fuzzy system, T1 or IT2.

A. First-Order Rule Partitions in a Fuzzy System

When a firing level (interval) is computed using either the
minimum or product t-norms, then its nonzero occurrence over
X1 ×X2 ×· · ·×Xp (see Definition 7) can be established by
examining the components of the firing level (interval) sepa-
rately over each Xi and then combining those results for all
i = 1, . . . , p, by using either the minimum or product t-norms,
because

{
min (any fi = 0, all other fi) = 0
product (any fi = 0, all other fi) = 0

. (5)

These facts justify defining a first-order rule partition initially
for each Xi and then for X1 ×X2 and X1 ×X2 ×· · ·×Xp .

1) First-Order Rule Partitions for Each Xi:
Definition 9: In a T1 (IT2) fuzzy system, a T1 (IT2) first-

order rule partition7 of Xi is a collection of nonoverlapping
intervals in Xi , in each of which the same number of same rules
is fired whose firing levels (intervals) contribute to the output of
that system.

Notations for T1 (IT2) first-order rule partitions are given in
Table I. When discussions below are for T1 fuzzy systems, ∗ is
replaced by “T1”, and when they are for IT2 fuzzy systems, ∗
is replaced by “IT2.”

A formal two-step procedure for establishing P 1
∗ (kxi |xi),

NR (kxi ), and N 1
∗ (Xi) on a plot (sketch) of the MFs (FOUs) of

xi , is given in Table II.
Example 1: Consider x1 ∈ [0, 10] covered by three T1 FSs,

as depicted in Fig. 3(a), for which there are three T1 (Zadeh
or TSK) rules whose antecedents are: R1 : IF x1 is L, R2 :
IF x1 is M, and, R3 : IF x1 is H. The results for Step 1 in Table II
are shown on Fig. 3(a). Clearly, N 1

T1(X1) = 5. Next, all of the

6See [37, Table 9.5] for descriptions of the nonlinear natures of three other
kinds of IT2 fuzzy systems.

7[49] calls these “partitions,” but does not distinguish between first- and
second-order partitions, something that only occurred to the author during the
writing of [37].

TABLE I
NOTATIONS USED FOR FIRST-ORDER RULE PARTITIONS. IN THIS TABLE,

SUBSCRIPT ∗ REFERS TO EITHER T1 OR IT2

First-Order Rule Partitions

Symbol Definition (i = 1, ..., p)

P 1
∗ (kxi |xi ) T1 or IT2 first-order rule partition of Xi

kxi Counter/index of T1 or IT2 first-order rule
partition of Xi ; kxi = 1, . . . , N 1

∗ (Xi )
N 1

∗ (Xi ) Total number of T1 or IT2 first-order rule
partitions of Xi

NR (kxi ) Fixed number of same rules fired in each
P 1
∗ (kxi |xi )

P 1
∗ (kx 1 , kx 2 , . . . , kxp ) T1 or IT2 first-order rule partition of

X1 ×X2 ×· · ·×Xp , numbered
(kx 1 , kx 2 , . . . , kxp )

N 1
∗ (X1 , X2 , . . . , Xp ) Total number of T1 or IT2 first-order rule

partitions of X1 ×X2 ×· · ·×Xp [use (6)]
NR (kx 1 , kx 2 , . . . , kxp ) Fixed number of rules that are fired in each

P 1
∗ (kx 1 , kx 2 , . . . , kxp )[use (7)]

TABLE II
TWO-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) FIRST-ORDER RULE

PARTITION QUANTITIES FOR A SINGLE VARIABLE, xi , IN A T1 (IT2) FUZZY
SYSTEM, ON A PLOT (SKETCH) OF ITS MFS (FOUS)

Step Description

1 Scan the axis of xi with an imaginary dashed vertical line from left
to right. Count the number of intersections of this line with the MFs
(FOUs) of xi ; they represent the number of same rules [NR (kxi )]
whose firing levels (intervals) contribute to the output of a T1 (IT2)
fuzzy system. When this number, or the nature of the same rules,
changes draw a dashed vertical line; it represents the boundary of a
T1 (IT2) first-order rule partition. Insert a dashed vertical line at the
start and at the end of Xi . For each xi , the interval of real numbers
between adjacent dashed vertical lines is its T1 (IT2) first-order
rule partition.

2 Count the number of P 1
∗ (kxi |xi ), the total being N 1

∗ (Xi ); then,
kxi = 1, . . . , N 1

∗ (Xi ).

Fig. 3. Example 1 figures: (a) T1 fuzzy sets and (b) IT2 fuzzy sets.
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TABLE III
FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) FIRST-ORDER RULE

PARTITION QUANTITIES FOR X1 ×X2 IN A T1 (IT2) FUZZY SYSTEM

Step Description

1 Locate the T1 (IT2) first-order rule partitions of x1 (x2 ) on the
horizontal (vertical) axis, and establish NR (kx 1 ), NR (kx 2 ),
N 1

∗ (X1 ), and N 1
∗ (X2 )

2 Extend all dashed T1 (IT2) first-order rule partitions (turning them
into solid lines) so that they cover X1 ×X2 . The results from
doing this will be a collection of rectangles (or squares).

3 Compute NR (kx 1 , kx 2 ) using (7).
4 Compute N 1

∗ (X1 , X2 ) using (6).

T1 fazzy sets (FSs) in the three rules and in Fig. 3(a) are replaced
by the IT2 FSs in8 Fig. 3(b). The results for Step 1 in Table II are
now shown in Fig. 3(b). Clearly, N 1

IT2(X1) = 5. In this example,
the number of T1 (IT2) first-order rule partitions is greater than
the number of MFs that cover X1 , but this may not always be
true (see Example 5). What is noticeably different about the
five IT2 first-order rule partitions in Fig. 3(b) is: the one-rule
IT2 first-order rule partitions are shorter in length than their T1
counterparts in Fig. 3(a), and, the two-rule IT2 first-order rule
partitions are longer in length than their T1 counterparts. This
can be summarized, as: It seems that MF uncertainty tends to
fire more rules more often (at least in this example).

2) First-Order Rule Partitions for X1 ×X2:
Definition 10: In a T1 (IT2) fuzzy system, a T1 (IT2) first-

order rule partition of9 X1 ×X2 is a collection of non-
overlapping rectangles (or squares) in X1 ×X2 , in each of
which the same number of same rules is fired whose firing
levels (intervals) contribute to the output of a T1 (IT2) fuzzy
system.

Notations for T1 (IT2) first-order rule partitions of X1 ×
X2 are in the bottom half of Table I (set p = 2). On a plot
(sketch) of the MFs of x1 on the horizontal axis and the MFs
of x2 on the vertical axis, a formal four-step procedure for
establishing P 1

∗ (kx1 , kx2 ), NR (kx1 , kx2 ), and N 1
∗ (X1 ,X2) is

given in Table III. In order to implement this procedure, one must
first complete the Table II two-step procedure for establishing
(i = 1, 2) P 1

∗ (kxi |xi), NR (kxi ) and N 1
∗ (Xi).

Example 2: This is an extension of Example 1 from one to
two variables, in which x1 , x2 ∈ [0, 10] and both variables are
covered by the three MFs (FOUs) that are depicted in Fig. 3(a)
and (b), for which there are nine (Zadeh or TSK) rules whose
antecedents are: R1 (R2 , R3) : IF x1 is L and x2 is L (M,H),
R4 (R5 , R6) : IF x1 is M and x2 is L (M,H), and R7

(R8 , R9) : IF x1 is H and x2 is L (M,H). The results for Steps
1–3 in Table III are shown in Fig. 4(a) and (b). In order to keep
these figures as uncluttered as possible, we have left off the de-
tailed notations that are in Fig. 3. Note that kx1 , kx2 = 1, . . . , 5
begin in the lowest left-hand square and sweep upward lexico-

8There are many ways to “blur” the Fig. 3(a) MFs to arrive at their IT2
FOUs (see the first three parts of Example 3 in Section I of the Supplementary
Material). We have assumed that there is uncertainty about a, b, c, and d to arrive
at the FOUs in Fig. 3(b), and leave it to the reader to examine other choices.

9If a rule has p antecedents, then X1 and X2 each denote the universe of
discourse for any two of them.

Fig. 4. Example 2 figures for Table III’s Steps 1–3: (a) T1 fuzzy system, and
(b) IT2 fuzzy system.

graphically from left to right. The numbers that appear in the
different colored rectangles (squares) denote NR (kx1 , kx2 ); the
“1” regions have one fired rule and occur where NR (kx1 ) = 1
and NR (kx2 ) = 1 [e.g., when (kx1 , kx2 ) = (3, 3) rule R5 fires];
the “2” regions have two fired rules and occur either where
NR (kx1 ) = 1 and NR (kx2 ) = 2 or where NR (kx1 ) = 2 and
NR (kx2 ) = 1 [e.g., when (kx1 , kx2 ) = (4, 3) rules R5 and
R8 fire]; and, the “4” regions have four fired rules and occur
where NR (kx1 ) = 2 and NR (kx2 ) = 2 [e.g., when (kx1 , kx2 ) =
(2, 4) rules R2 , R3 , R5 , and R6 fire].

Counting the total number of T1 and IT2 first-order rule
partitions on Fig. 4(a) and (b), respectively, one obtains
N 1

T 1(X1 ,X2) = N 1
IT 2(X1 ,X2) = 25. In summary, there are

25 T1 and IT2 first-order rule partitions for this nine-rule T1
(IT2) fuzzy system. So, the T1 (IT2) fuzzy system with only 9
rules and 25 first-order rule partitions is able to provide a much
greater sculpting of X1 ×X2 than is a 9-rule crisp rule based
system that can only partition X1 ×X2 into 9 regions, one for
each rule.

Comparing Fig. 4(a) and (b), one observes that one-rule IT2
first-order rule partitions are much smaller in size than their
T1 counterparts, and four-rule first-order rule IT2 partitions are
much larger in size than their T1 counterparts, which can again
be summarized by stating: It seems that MF uncertainty tends
to fire more rules more often (at least in this example).

3) First-Order Rule Partitions for X1 ×X2 ×· · ·×Xp :
Definition 11: In a T1 (IT2) fuzzy system, a T1 (IT2) first-

order rule partition of X1 ×X2 ×· · ·×Xp is a collection of
non-overlapping hyperrectangles (or squares) in X1 ×X2 ×
· · ·×Xp , in each of which the same number of same rules is
fired whose firing levels (intervals) contribute to the output of a
T1 (IT2) fuzzy system.

Notations for T1 (IT2) first-order rule partitions of X1 ×
X2 ×· · ·×Xp are in the bottom half of Table I. Note that

N 1
∗ (X1 ,X2 , . . . , Xp) =

p∏

i=1

N 1
∗ (Xi) (6)

NR (kx1 , kx2 , . . . , kxp ) =
p∏

i=1

NR (kxi ). (7)

Returning to Example 2, observe from (6) that N 1
T1(X1 ,

X2) = N 1
IT2(X1 ,X2) = 5 · 5 = 25, which is in agreement with

the direct counts that were obtained from Fig. 4(a) and (b).
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TABLE IV
NOTATION USED FOR SECOND-ORDER RULE PARTITIONS. SUBSCRIPT ∗ REFERS

TO EITHER T1 OR IT2

Second-Order Rule Partitions

Symbol Definition (kxi = 1, . . . , N 1
∗ (xi ))

P 2
∗ (kxi , mkx i

|xi ) T1 or IT2 second-order rule partition of Xi ,
often abbreviated to (kxi , mkx i

)
mkx i

Counter/index of T1 or IT2 second-order rule
partition of Xi ; mkx i

= 1, . . . , N 2
∗ (kxi |xi )

N 2
∗ (kxi |xi ) Total number of T1 or IT2 second-order rule

partitions within T1 or IT2 first-order rule
partition of Xi , P 1

∗ (kxi |xi )
N 2

∗ (Xi ) Total number of T1 or IT2 second-order rule
partitions of Xi

P 2
∗ ((kx 1 , kx 2 ), T1 or IT2 second-order rule partition of
m(kx 1 ,k x 2 ) ) X1 ×X2

m(kx 1 ,k x 2 ) Counter/index of T1 or IT2 second-order rule
partition of X1 ×X2 ; m(kx 1 ,k x 2 ) =
1, . . . , N 2

∗ (kx 1 , kx 2 )
N 2

∗ (kx 1 , kx 2 ) Total number of T1 or IT2 second-order rule
partitions within the (kx 1 , kx 2 )th T1 or IT2
first-order rule partition of X1 ×X2

Z(Xi ) Number of times that N 2
∗ (kxi |xi ) = 0

N 2 ′
∗ (Xi ) N 2

∗ (Xi ) + Z(Xi )
N 2

∗ (X1 , X2 , . . . , Xp ) Total number of T1 or IT2 second-order rule
partitions of X1 ×X2 ×· · ·×Xp [use (13)]

Even for rules that have p ≥ 4 antecedents, for which it is not
possible to visualize the T1 (IT2) first-order rule partitions, it
is still possible to compute their total number by (6) as well as
the fixed number of rules that are fired in each hyperrectangle
by (7).

It should be evident by now that it is first-order uncertainty
partitions that are responsible for T1 first-order rule partitions
and second-order uncertainty partitions that are responsible for
IT2 first-order rule partitions, and that it is such T1 (IT2) first-
order rule partitions that make a T1 (IT2) fuzzy system uniquely
different from a crisp system. But, there is much more!

B. Second-Order Rule Partitions in a Fuzzy System

When a MF (FOU) changes its mathematical formula within
a first-order rule partition, second-order rule partitions are
obtained.

1) Second-Order Rule Partitions for Each Xi:
Definition 12: In a T1 (IT2) fuzzy system, a T1 (IT2) second-

order rule partition of Xi occurs when the MF (FOU) of a T1
(IT2) fuzzy set that is associated with xi changes its math-
ematical formula within a T1 (IT2) first-order rule partition
of Xi .

Notations for T1 (IT2) second-order rule partitions are given
in Table IV. Unfortunately, they are more complicated than the
notations for first-order rule partitions because there are now two
indexes: kxi indexes the first-order partitions and mkx i

indexes
the second-order partitions that occur within kxi .

A formal four-step procedure for establishing P 2
∗ (kxi ,

mkx i
|xi), N 2

∗ (kxi |xi), and N 2
∗ (Xi) begins with a plot (sketch)

of the first-order rule partitions and proceeds as in Table V.
Z(xi) and N 2′

∗ (Xi) are explained in Section B.3.

TABLE V
FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) SECOND-ORDER RULE
PARTITION QUANTITIES FOR A SINGLE VARIABLE xi , IN A T1 (IT2) FUZZY

SYSTEM, ON A PLOT (SKETCH) OF ITS RESPECTIVE
FIRST-ORDER RULE PARTITIONS

Step Description

1 Scan the axis of xi with an imaginary dotted vertical line from left
to right. Wherever a MF (LMF or UMF) changes its formula, draw
a dotted vertical line. If the change in formula occurs at a boundary
of a T1 (IT2) first-order rule partition, then do not draw such a
vertical dotted line.

2 The interval of real numbers between adjacent dotted vertical lines
or between a dotted line and a dashed (or dashed and dotted) line is
its T1 (IT2) second-order rule partition [P 2

∗ (kxi , mkx i
|xi )].

3 Each T1 (IT2) first-order rule partition has from zero to a finite
number of T1 (IT2) second-order rule partitions [N 2

∗ (kxi |xi )].
4 Count the total number of N 2

∗ (kxi |xi ), the total being N 2
∗ (Xi ).

Fig. 5. Example 3 figures: (a) T1 FSs and (b) IT2 FSs.

Example 3: This is a continuation of Example 1. The re-
sults for Table V’s Steps 1–3 are shown in Fig. 5(a) and
(b). For the T1 fuzzy system, on Fig. 5(a): P 1

T1(1|x1) has
N 2

T 1(1|x1) = 2 T1 second-order rule partitions that are la-
beled (1, 1) and (1, 2); P 1

T1(2|x1) and P 1
T1(4|x1) have zero

T1 second-order rule partitions; P 1
T1(3|x1) has N 2

T1(3|x1) = 3
T1 second-order rule partitions that are labeled (3, 1), (3, 2),
and (3, 3); and, P 1

T1(5|x1) has N 2
T1(5|x1) = 2 T1 second-

order rule partitions that are labeled (5, 1) and (5, 2); hence,
N 2

T1(X1) =
∑5

kx 1 =1 N 2
T1(kx1 |x1) = 7.

For the IT2 fuzzy system, in Fig. 5(b): P 1
IT2(1|x1),

P 1
IT2(3|x1), and P 1

IT2(5|x1) have zero second-order rule par-
titions; P 1

IT2(2|x1) has N 2
IT2(2|x1) = 4 IT2 second-order rule

partitions that are labeled (2, 1), . . . , (2, 4); and, P 1
IT2(4|x1)

has N 2
IT2(4|x1) = 5 IT2 second-order rule partitions that

are labeled (4, 1), . . . , (4, 5); hence, N 2
IT2(X1) =

∑5
kx 1 =1

N 2
IT2(kx1 |x1) = 9.
Generally speaking, an IT2 fuzzy system has more second-

order rule partitions than its comparable T1 fuzzy system, be-
cause it uses two sets of T1 FSs, LMFs and UMFs.

2) Second-Order Rule Partitions for X1 ×X2:
Definition 13: In a T1 (IT2) fuzzy system, a T1 (IT2) second-

order rule partition of X1 ×X2 occurs when the MF (FOU) of
a T1 (IT2) fuzzy set that is associated with either x1 or x2
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TABLE VI
FOUR-STEP PROCEDURE FOR ESTABLISHING T1 (IT2) SECOND-ORDER RULE
PARTITION QUANTITIES FOR X1 ×X2 IN A T1 (IT2) FUZZY SYSTEM, ON A

PLOT (SKETCH) OF THE FIRST-ORDER RULE PARTITIONS

Step Description

1 Locate the T1 (IT2) second-order rule partitions of x1 (x2 ) on the
horizontal (vertical) axis.

2 Extend all dotted T1 second-order rule partitions so that they cover
X1 ×X2 . The results from doing this will be a collection of
rectangles (or squares).

3 Each T1 (IT2) first-order rule partition on X1 ×X2 has from zero
to a finite number of T1 (IT2) second-order rule partitions.
Establish N 2

∗ (kx 1 , kx 2 ) by counting.
4 Count the total number of N 2

∗ (kx 1 , kx 2 ), the total being
N 2

∗ (X1 , X2 ).

Fig. 6. Example 4 figures for Table VI’s Steps 1–3: (a) T1 FSs and (b) IT2
FSs.

changes its mathematical formula within a T1 (IT2) first-order
rule partition of X1 ×X2 .

Notations for T1 (IT2) second-order rule partitions of X1 ×
X2 are in the second portion of Table IV. Note that

N 2
∗ (X1 ,X2) =

N 1
∗ (X 2 )∑

kx 2 =1

N 1
∗ (X 1 )∑

kx 1 =1

N 2
∗ (kx1 , kx2 ). (8)

In order to use (8) a formula is needed for N 2
∗ (kx1 , kx2 ).

Instead of providing such a localized formula, we take a different
approach in Section B.3 to computing N 2

∗ (X1 ,X2).
A formal four-step procedure for establishing P 2

∗ ((kx1 ,
kx2 ),m(kx 1 ,kx 2 )), N 2

∗ (kx1 , kx2 ), and N 2
∗ (X1 ,X2) begins with

a plot (sketch) of the first-order rule partitions and proceeds as
in Table VI.

Example 4: This is a continuation of Examples 2 and 3. The
results of Steps 1–3 of Table VI are shown on Fig. 6(a) and
(b). In order to keep these figures as uncluttered as possible,
we have left off the detailed notations like the ones that are
in Fig. 5(a) and (b). In each first-order rule partition there
are two numbers that are separated by a colon; the first is
NR (kx1 , kx2 ) and the second is N∗(kx1 , kx2 ), e.g., 2:3 indi-
cates that two rules are fired in a first-order rule partition and
there are three second-order rule partitions in that first-order rule
partition.

Fig. 7. Example 5 figures: (a) T1 FSs and (b) IT2 FSs.

By adding all of the numbers that appear to the right of the
colons in Fig. 6(a), one finds that

N 2
T1(X1 ,X2) =

5∑

kx 2 =1

5∑

kx 1 =1

N 2
T1(kx1 , kx2 ) = 77. (9)

So, the T1 fuzzy system with only 9 rules and 25 T1 first-order
rule partitions has 77 T1 second-order rule partitions, which
demonstrates a very large amount of sculpting on X1 ×X2 ,
something that cannot be achieved with a crisp 9-rule rule-based
system.

By adding all of the numbers that appear to the right of the
colons in Fig. 6(b), one finds that

N 2
IT2(X1 ,X2) =

5∑

kx 2 =1

5∑

kx 1 =1

N 2
IT2(kx1 , kx2 ) = 135. (10)

So, the IT2 fuzzy system, which has the same number of T1
first-order rule partitions as the T1 fuzzy system, has close to
twice as many IT2 second-order rule partitions. Consequently, it
is able to provide a much greater and finer sculpting of X1 ×X2
than is the T1 fuzzy system.

Example 5: This is another nine-rule fuzzy system in which
x1 , x2 ∈ [− a, a]. Fig. 7(a) depicts the T1 first- and second-order
rule partitions. Observe that there are four T1 first-order rule
partitions each of which has four fired rules. Observe, also, that
there are no T1 second-order rule partitions.

Fig. 7(b) depicts the IT2 first- and second-order rule parti-
tions. Observe that there are also four IT2 first-order rule par-
titions each of which also has four fired rules, but each IT2
first-order rule partition contains nine IT2 second-order rule
partitions. Consequently, although the T1 and IT2 fuzzy sys-
tems have exactly the same number of first-order rule partitions
(which in this example are less than the total number of rules),
there is no further sculpting of the T1 fuzzy system, whereas
there is much further sculpting of the IT2 fuzzy system.

3) Second-Order Rule Partitions for X1 ×X2 ×· · ·×Xp :
Definition 14: In a T1 (IT2) fuzzy system, a T1 second-
order rule partition of X1 ×X2 ×· · ·×Xp occurs when the
MF (FOU) of the T1 (IT2) fuzzy set associated with either
x1 , or x2 , or . . . , or xp changes its mathematical formula
within a T1 (IT2) first-order rule partition of X1 ×X2 ×· · ·×
Xp .
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Of course, it is impractical (impossible) to extend the
Table VI procedure from two to more than three variables (even
for three variables the construction would be very tedious). What
is arguably most important is to determine the total number of
T1 (IT2) second-order rule partitions without having to directly
count the number of such partitions in each T1 (IT2) first-order
rule partition.

Interesting Observations: In Fig. 6(a) and (b) observe that it is
only in regions of X1 ×X2 where both x1 and x2 individually
have no second-order rule partitions that such regions also have
no second-order rule partitions. There are four such regions
in Fig 6(a), two of which are [a, b] ×[a, b] and [a, b] ×[c, d],
and there are nine such regions in Fig. 6(b), two of which are
[0, a′] ×[0, a′] and [b′, c′] ×[b′, c′]. In such regions, multiplying
0 by 0 gives the correct number of second-order rule partitions,
which is also 0. On the other hand, regions of X1 ×X2 where
either (but not both) x1 or x2 individually have no second-order
rule partitions jointly have a nonzero number of second-order
rule partitions. There are six such regions in Fig. 6(a), three of
which are [a, b] ×[0, a], [a, b] ×[b, c], and [c, d] ×[d, 10], and
six such regions in Fig. 6(b), three of which are [0, a′] ×[a′, b′],
[0, a′] ×[c′, d′], and [d′, 10] ×[c′, d′]. In such regions, multiply-
ing 0 by any nonzero number always gives 0, which is not the
correct number of the region’s second-order rule partitions. If,
instead the 0 is replaced by 1 then multiplying 1 by a nonzero
number gives the correct number of the region’s second-order
rule partitions.

These observations lead to the following novel way to com-
pute N 2

∗ (X1 ,X2): Let the number of times that (i = 1, 2)
N 2

∗ (kxi |xi) = 0 be called Z(Xi), and let

N 2′
∗ (Xi) ≡ N 2

∗ (Xi) + Z(Xi). (11)

Then

N 2
∗ (X1 ,X2) = N 2′

∗ (X1)N 2′
∗ (X2) − Z(X1)Z(X2). (12)

Example 6: This is a continuation of Examples 3 and 4. For
the T1 fuzzy system, applying the Example 3 results to both
x1 and x2 , N 2

T1(X1) = N 2
T1(X2) = 7. Examining Fig. 5(a), it

is clear that Z(x1) = Z(x2) = 2. Consequently, using (11) and
then (12), one finds N 2′

T1(X1) = N 2′
T1(X2) = 9 and N 2

T1(X1 ,
X2) = 9 · 9 − 2 · 2 = 77, which agrees with N 2

T1(X1 ,X2) that
was obtained in Example 4’s (9).

For the IT2 fuzzy system, applying the Example 3 results
to both x1 and x2 , N 2

IT2(X1) = N 2
IT2(X2) = 9. Examining

Fig. 5(b), it is clear that Z(x1) = Z(x2) = 3. Consequently, us-
ing (11) and then (12), one finds N 2′

IT2(X1) = N 2′
IT2(X2) = 12

and N 2
IT2(X1 ,X2) = 12 · 12 − 3 · 3 = 135, which agrees with

N 2
IT2(X1 ,X2) that was obtained in Example 4’s (10).
Due to space limitations, using (11) and (12) for Example 5

are left to the reader.
The extension of (12) to p variables is

N 2
∗ (X1 ,X2 , . . . , Xp) =

p∏

i=1

N 2′
∗ (Xi) −

p∏

i=1

Z(Xi). (13)

The sculpting of X1 ×X2 ×· · ·×Xp by means of second-
order rule partitions grows (roughly) exponentially with p both

for T1 and IT2 fuzzy systems; however, if each variable in the
IT2 fuzzy system has more IT2 second-order rule partitions than
it does for a T1 fuzzy system, then the sculpting of X1 ×X2 ×
· · ·×Xp will be vastly greater for the IT2 fuzzy system.

4) Observations: Some additional examples of T1 and IT2
rule partitions are given in the Supplementary Material to this
paper. From these examples, as well as the earlier examples, for
which MFs are piece-wise linear, it can be observed that:

1) In many examples, the number of first-order rule partitions
for xi equals 2 + the number of10 MFs (or UMFs) that
do not span the entire universe of discourse (as Z does in
Fig. 7). Hence, increasing the number of first-order rule
partitions can be achieved by granulating xi more finely
into more fuzzy sets.

2) The point at which a MF changes its mathematical formula
is called a kink. The number of second-order rule partitions
in a first-order rule partition of xi , when there is at least
one MF kink in the latter, equals 1 + the number of MF
kinks in the first-order rule partition; when there are zero
MF kinks in the first-order rule partition, there are zero
second-order rule partitions; hence, greater sculpting is
achieved by using MFs (UMFs and LMFs) that have more
kinks.

3) Because an IT2 fuzzy set is described by two T1 fuzzy
sets (LMF and UMF), it always has the potential to have
more second-order rule partitions than a T1 fuzzy set;
hence, an IT2 fuzzy system almost always has the po-
tential to out-sculpt a T1 fuzzy system when both use
the same number of MFs (FOUs) for each variable. Why
this is stated as “almost always” rather than “always” is
explained in Section IV.

IV. NOVELTY PARTITIONS

So far, our attention has been directed exclusively at the parti-
tioning of X1 ×X2 ×· · ·×Xp due to the interactions of inputs
to a fuzzy system with their respective antecedents. Each T1 or
IT2 second-order rule partition contains a NL system where
the exact nature of the nonlinearity depends on rule conse-
quents and output processing. In both T1 and IT2 fuzzy systems
that use direct defuzzification there is no further partitioning of
X1 ×X2 ×· · ·×Xp ; but, in IT2 fuzzy systems that use TR
there is another layer of partitioning of X1 ×X2 ×· · ·×Xp

into IT2 novelty partitions.
Definition 15: IT2 novelty11 partitions of X1 ×X2 ×· · ·×

Xp occur only when TR is used, and result from different end-
points of a firing interval being used to compute the end-points
of the type-reduced set. They occur within an IT2 first-order
rule partition, regardless of whether or not there are any IT2
second-order rule partitions.

It is very difficult to determine and display the geometry
of IT2 novelty partitions because there are no closed-form
formulas for the end-points of a type-reduced set. This does
not diminish their importance because they provide us with

10T1 fuzzy partitions are excluded herein because there are no IT2 counter-
parts to them.

11Novelty, as defined here, was introduced first in [50] and [51].
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TABLE VII
RULE BASE OF THE IT2 FPID CONTROLLER

E/∆E Ñ∆ E Z̃∆ E P̃∆ E

ÑE R̃1
Z : U = − 1 R̃2

Z : U = − 0.5 R̃3
Z : U = 0

Z̃E R̃4
Z : U = − 0.5 R̃5

Z : U = 0 R̃6
Z : U = 0.5

P̃E R̃7
Z : U = 0 R̃8

Z : U = 0.5 R̃9
Z : U = 1

Fig. 8. IT2 first-order rule partitions for the IT2 FPID controller.

additional insight into the further partitioning (sculpting) of
X1 ×X2 ×· · ·×Xp , something that can only occur for an
IT2 fuzzy system that uses TR, and can never occur in a
T1 fuzzy system. IT2 novelty partitions may help to explain
why system performance is often arguably better for an IT2
fuzzy system that uses TR than it is for one that does not
use TR.

Some examples of IT2 novelty partitions that use the mini-
mum t-norm12 are in [38, Ch. 4 and 5)], [15], [41], [58]. In the
rest of this section we shall display the geometry of IT2 novelty
partitions (for the product t-norm and COS TR) by using por-
tions of a case study that is in13 [37, Ch. 10]. Our focus is on
an IT2 fuzzy PID (FPID) controller, U , that has two normalized
inputs, E and Ė ≡ ∆E. It uses the symmetrical 3 ×3 rule base
in Table VII. The rule structure of the IT2 FPID controller is
(l = 1, . . . , 9)

R̃l
Z : IF E is F̃ l

1 and ∆E is F̃ l
2 THEN U is Gl. (14)

In (14), both E and ∆E are described by the three overlapping
FOUs that are depicted in Fig. 8, and Gl are the crisp singletons
that are tabulated in Table VII.

It should be clear, from Fig. 8, that E and ∆E each have two
IT2 first-order rule partitions in which two rules are fired, and
that there are no IT2 second-order rule partitions. In fact, a T1
FPID controller that uses the UMFs of the three T2 FSs will
also have two T1 first-order rule partitions in which two rules

12Determining novelty partitions, when the minimum t-norm is used, is more
difficult to do then when the product t-norm is used because the minimum of
two quantities is a conditional result, whereas the product is not.

13The case study was created by Prof. T. Kumbasar, most generously.

Fig. 9. IT2 novelty partitions for (a) yCOS
l and (b) yCOS

r in the IT2 FPID
controller. Switch points L and R correspond to L and R in (2) and (3),
respectively.

are fired, and no T1 second-order rule partitions. These facts
make this a very interesting example because the playing field
has been leveled for both the T1 and IT2 FPID controllers in
terms of first- and second-order rule partitions.

Fig. 8 depicts the IT2 first-order rule partitions for E ×∆E
as four regions in each of which the IT2 FPID controller
uses four rules. Because the LMFs and UMFs are linear, it is
easy to write formulas for them, after which it is then easy
to write formulas for the lower and upper ends of the fir-
ing intervals in each region. Table SM-1 in the Supplemen-
tary Material tabulates all of this information for each of the
four regions. This is such a relatively simple example that, in-
stead of using any of the iterative algorithms to compute the
switch points of the COS type-reduced set, it is more instruc-
tive to use brute force by considering the five possible itera-
tions that are summarized in Table SM-2 in the Supplementary
Material.

Fig. 9 depicts the IT2 novelty partitions for yCOS
l and yCOS

r .
Observe that each of these four regions has two IT2 novelty par-
titions and, therefore, E ×∆E has eight IT2 novelty partitions
for both yCOS

l and yCOS
r . When yCOS

l and yCOS
r are combined

during defuzzification this will involve an overlay of the two
sets of IT2 novelty partitions, thereby partitioning (sculpting)
E ×∆E into 16 IT2 novelty partitions. None of this can oc-
cur in a T1 FPID controller or in an IT2 FPID controller that
does not use TR. These IT2 novelty partitions may help to ex-
plain why of four IT2 FPID controllers that were designed and
reported in [37, Ch. 10], the14 one that gave the best control
system performance metrics15 used COS TR.

Control surfaces for T1 and four IT2 FPID controllers are
given in [37, Fig. 10.24], and Fig. SM-1 in the Supplementary
Material. They clearly reveal the more undulating surface for

14The four are (e.g., [37]): (1) COS TR + defuzzification; (2) Nie-Tan direct
defuzzification; (3) Biglarbegian, Melek and Mendel direct defuzzification; and,
(4) WM uncertainty bounds direct defuzzification. The latter three involve no
TR and consequently have no IT2 novelty partitions. From a rule-partition
perspective, all four have 4 IT2 first-order rule partitions and no IT2 second-
order rule partitions; so they are all variable-structure NL systems, each with 4
NL subsystems. But, because of COS TR, the first design has 16 IT2 novelty
partitions, and so it is a variable-structure NL system with 16 NL subsystems.

15The performance metrics are: % overshoot, settling time and integral abso-
lute error. “Best control system performance metrics” means smaller numerical
values for these metrics.
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Fig. 10. Example 7 figures: (a) T1 FSs and (b) IT2 FSs. Numbers above top
dashed line denote the index of the T1 or IT2 first-order rule partition; circled
numbers denote the number of T1 or IT2 second-order rule partitions contained
within a first-order rule partition.

the COS + defuzzification IT2 FPID controller, which for this
controller is only due to the sculpting of E ×∆E by IT2 novelty
partitions.

V. GAUSSIAN MFS AND FOUS

Gaussian MFs are sometimes used in T1 fuzzy systems and
frequently used in IT2 fuzzy systems. Three reasons for the
latter are:

1) because each such MF (Gaussian LMF and UMF) spans
the entire universe of discourse, the resulting output sur-
faces are always continuous (this is proved in [53]);

2) it is straightforward to compute derivatives of such MFs
(or LMFs and UMFs) with respect to their parameters
when such derivatives are used in gradient-based opti-
mization algorithms;

3) such MFs and FOUs are emphasized in [35], which is very
highly referenced by T2 fuzzy system researchers.

Unfortunately, because Gaussian MFs (FOUs) span the en-
tire universe of discourse, fuzzy systems that use them have
reduced sculpting capabilities, i.e., such fuzzy systems (T1
or IT2) have one first-order rule partition (i.e., all rules fire
over all of X1 ×X2 ×· · ·×Xp , although many of the fir-
ing quantities will be very small) and none to some second-
order rule partitions.16 However, an IT2 fuzzy system that
uses COS TR + defuzzification will still have IT2 novelty
partitions.

These observations may help to explain why when compar-
ison studies are made between T1 and IT2 fuzzy systems that
both use Gaussian T1 MFs, LMFs, and UMFs, one does not see
much performance improvement for the IT2 fuzzy system, and
suggests that the choice made for the shapes of T1 and IT2 MFs
or FOUs is more important than has been believed in the past.
Rule and IT2 novelty partitions suggest that MFs or FOUs that

16T1 Gaussians and IT2 Gaussians with uncertain standard deviations have
none; but, IT2 Gaussians with uncertain means have some. Additionally, trun-
cated Gaussians will have more first- and second-order rule partitions; however,
the greater the accuracy the less the truncation, and consequently there will be
fewer first- and second-order rule partitions.

Fig. 11. Example 8 figures: (a) T1 FSs and (b) IT2 FSs. The second sentence
in the caption of Fig. 9 applies here as well.

have greater sculpting capabilities will lead to fuzzy systems
that can outperform comparable fuzzy systems that have lesser
sculpting capabilities.

VI. EQUALITY OF PARAMETERS AND SCULPTING

Here we choose MFs and FOUs that have exactly the same
number of parameters and demonstrate the advantage that the
IT2 fuzzy system still has in terms of its greater sculpting capa-
bilities. We do this by means of two examples.

Example 7: In Fig. 10 the T1 MFs are asymmetric triangles,
each described by three parameters, e.g., a, b, and c, whereas
the IT2 FOUs have symmetrical LMFs and UMFs collectively
described by three parameters, e.g., a′, b′, and c′. Although x1
has 5 first-order rule partitions for both T1 and IT2 fuzzy sets,
it only has 6 T1 second-order rule partitions, whereas it has
12 IT2 second-order rule partitions. Hence, even though the T1
and IT2 fuzzy sets have the same number of parameters, the
IT2 fuzzy sets have twice as much sculpting capability. And,
of course, when COS TR + defuzzification is used for the IT2
fuzzy system, that system will also have IT2 novelty partitions
that will further sculpt its state space.

Example 8: In Fig. 11 the T1 MFs are asymmetric trape-
zoids, each described by four parameters, e.g., a, b, c, and d,
whereas the IT2 FOUs have symmetrical trapezoid LMFs and
UMFs, so each FOU is also described by four parameters, e.g.,
a′, b′, c′, and d′. Although x1 again has 5 first-order rule parti-
tions for both T1 and IT2 fuzzy sets, it only has 8 T1 second-
order rule partitions, whereas it has 17 IT2 second-order rule
partitions. Hence, even though the T1 and IT2 fuzzy sets have
the same number of parameters, the IT2 fuzzy sets again have
significantly more sculpting capability. And, of course again,
when COS TR + defuzzification is used for the IT2 fuzzy sys-
tem, it will also have IT2 novelty partitions that further sculpt
its state space.

Although examples are not a rigorous proof, these two, which
are representative of a multitude of other examples, clearly show
that even when T1 and IT2 fuzzy systems are described by
exactly the same number of parameters, the IT2 fuzzy sys-
tem has much greater sculpting capabilities than the T1 fuzzy
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system, which can provide the IT2 fuzzy system with an ability
to outperform the T1 fuzzy system.

VII. CONCLUSION AND FUTURE RESEARCH

This paper has provided some new and novel application-
independent perspectives on why improved performance usually
occurs as one goes from crisp, to T1, and then to IT2 fuzzy
systems, using three kinds of partitions.

Uncertainty partitions let T1 fuzzy sets be distinguished from
crisps sets, IT2 fuzzy sets be distinguished from T1 fuzzy sets,
and even GT2 fuzzy sets be distinguished from IT2 fuzzy sets.

Rule partitions are a direct result of uncertainty partitions and
are associated with firing levels for T1 fuzzy systems, and firing
intervals for IT2 fuzzy systems. First-order rule partitions par-
tition (sculpt) X1 ×X2 ×· · ·×Xp into hyperrectangles within
which are contained the same number of fired rules. It is not un-
common for T1 and IT2 fuzzy systems to have the same number
of first-order rule partitions, although MF uncertainties tend to
fire more rules more often in the IT2 fuzzy systems. Second-
order rule partitions can occur when MFs change their mathe-
matical formulae within a first-order rule partition. They sculpt
X1 ×X2 ×· · ·×Xp , more finely, and it is very common for
an IT2 fuzzy system to have many (vastly) more second-order
rule partitions than a T1 fuzzy system.

Additionally, an IT2 fuzzy system that uses COS TR + de-
fuzzification further partitions X1 ×X2 ×· · ·×Xp into more
hyperregions, called IT2 novelty partitions, and this pro-
vides such IT2 fuzzy systems with an even greater sculpting
of X1 ×X2 ×· · ·×Xp . IT2 novelty partitions overlay IT2
second-order rule partitions, or, if there are no IT2 second-
order rule partitions, they overlay IT2 first-order rule partitions.
And, IT2 novelty partitions can never occur in T1 fuzzy systems
because TR does not occur for them.

Within each sculpted partition of X1 ×X2 ×· · ·×Xp is an
NL fuzzy subsystem, and even though a T1 fuzzy system may
be described by a large number of such NL subsystems, an IT2
fuzzy system that uses COS TR + defuzzification will always
be described by more of them, and its NL subsystems are always
more NL than those of the T1 fuzzy system. It is the author’s
conjecture that: it is the greater sculpting of X1 ×X2 ×· · ·×
Xp that usually lets an IT2 fuzzy system outperform a T1 fuzzy
system, and usually lets a T1 fuzzy system outperform a crisp
system.

Some open research questions and extensions to this paper
are:

1) prove the just-stated conjecture using the framework of
rule and IT2 novelty partitions;

2) re-examine the value of choosing Gaussian MFs or FOUs
using the framework of rule and IT2 novelty partitions;

3) examine if mathematical formulas can be obtained for
IT2 novelty partitions, or will we always be limited to
obtaining them by computer simulations?;

4) extend the results to nonsingleton fuzzifiers and to other
kinds of T1 and IT2 fuzzy systems, such as intuitionistic
and hesitant fuzzy systems, to explain a priori if they lead
to even more partitions (sculpting), thereby suggesting

that they will outperform fuzzy systems that only use
traditional T1 and IT2 fuzzy sets;

5) extend the results to GT2 fuzzy systems, using the
horizontal-slice (also known as the α− plane [30] or
zSlice [48]) decomposition of a GT2 fuzzy set, to un-
derstand a priori whether or not the third dimension
of such fuzzy sets leads to even more partitions of
X1 ×X2 ×· · ·×Xp ;

6) extend the results to other t-norms;
7) extend the results to T1 and IT2 rule-based classifiers

(e.g., [27]);
8) extend the results to T1 and IT2 clustering (e.g., [3], [42]);
9) develop an inverse rule partition theory in which one

begins by specifying the geometrical natures of some
critical first- and second-order rule hyperpartitions in
X1 ×X2 ×· · ·×Xp and then works backward to estab-
lish the MFs or FOUs that lead to such partitions.
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Supplementary Materials 
 

I. More Rule-Partition Examples 
 
In the figures for all three examples of this section, numbers above the MFs or FOUs denote the index of 
the T1 or IT2 first-order rule partitions, and circled numbers denote the number of T1 or IT2 second-order 
rule partitions that are contained within a first-order rule partition. Tables that are to the right of the figures 
give numerical values for 

  
kx1
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N R(kx1

)  and 
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2(kx1
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Example 1: This is an example where three rules fire. For the T1 fuzzy system this occurs when 

  
kx1

= 4 , 

and for the IT2 fuzzy system this occurs when kx1 = 3, 5 and 7 . This example demonstrates that the number 

of first-order rule partitions does not have to be the same for T1 and IT2 fuzzy systems, and that MF 
uncertainty can fire more numbers of rules more often. The T1 fuzzy system has 9 T1 second-order rule 
partitions, whereas the IT2 fuzzy system has 16 IT2 second-order rule partitions.  
 

 

  
kx1

 1 2 3 4 5 6 7   8 = NT1
1 ( X1)  

  
N R (kx1

)  1 2 2 3 2 1 2 1 

  
NT1

2 (kx1
| x1)  0 2 3 0 0 2 2 0   NT1

2 ( X1) = 9  

 

  
kx1

 1 2 3 4 5 6 7 8   9 = N IT 2
1 ( X1)  

  
N R (kx1

)  1 2 3 2 3 2 3 2 1 

  
N IT 2

2 (kx1
| x1)  0 3 2 3 3 0 2 3 0   N IT 2

2 ( X1) = 16  

 
  

x1

1	

µW (x1 )

�	 �	

�	

�	 �	

�	 �	

�	

0																2																4																	6																	8															10	

1												2														3																			4					5			6										7							8	

µ !W (x1 )

x1

1	

�	 �	 �	

�	

�	

�	�	

0																2																4																	6																	8															10	

	1										2							3											4																		5						67								8									9	

�	



 2 

Example 2: More examples of T1 first- and second-order rule partitions. These examples illustrate what 
happens to the number of first- and second-order rule partitions as some or all of the MFs change shape. 
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Example 3: More examples of IT2 first- and second-order rule partitions. These examples illustrate what 
happens to the number of first- and second-order rule partitions as some or all of the FOUs change shape. 
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II. Data for IT2 FPID Controller Novelty Partitions 

 
Table SM-1: Ranges, Rules, UMFs, LMFs and firing intervals in the four regions (see Fig. 8) 
 Region 1 Region 2 Region 3 Region 4 
Ranges E ∈[−1,0]

ΔE ∈[-1,0]

 

E ∈[−1,0] 
ΔE ∈[0,1]

 

E ∈[0,1] 
ΔE ∈[0,1]

 

E ∈[0,1] 
ΔE ∈[-1,0]

 
Rules 

 

!RZ
1 : ( !NE , !NΔE )→−1
!RZ
2 : ( !NE , !ZΔE )→−0.5
!RZ
4 : ( !ZE , !NΔE )→−0.5
!RZ
5 : ( !ZE , !ZΔE )→ 0

 

 

!RZ
2 : ( !NE , !ZΔE )→−0.5
!RZ
3 : ( !NE , !PΔE )→ 0
!RZ
5 : ( !ZE , !ZΔE )→ 0
!RZ
6 : ( !ZE , !PΔE )→ 0.5

 

 

!RZ
5 : ( !ZE , !ZΔE )→ 0
!RZ
6 : ( !ZE , !PΔE )→ 0.5
!RZ
8 : ( !PE , !ZΔE )→ 0.5
!RZ
9 : ( !PE , !PΔE )→1

 

 

!RZ
4 : ( !ZE , !NΔE )→−0.5
!RZ
5 : ( !ZE , !ZΔE )→ 0
!RZ
7 : ( !PE , !NΔE )→ 0
!RZ
8 : ( !PE , !ZΔE )→ 0.5

 

UMFs 

 

UMF( !NE ) = −E
UMF( !ZE ) = E +1
UMF( !NΔE ) = −ΔE
UMF( !ZΔE ) = ΔE +1

 

 

UMF( !NE ) = −E
UMF( !ZE ) = E +1
UMF( !ZΔE ) = 1− ΔE
UMF( !PΔE ) = ΔE

 

 

UMF( !ZE ) = 1− E
UMF( !PE ) = E
UMF( !ZΔE ) = 1− ΔE
UMF( !PΔE ) = ΔE

 

 

UMF( !ZE ) = 1− E
UMF( !PE ) = E
UMF( !NΔE ) = −ΔE
UMF( !ZΔE ) = 1+ ΔE

 

LMFs 

 

LMF( !NE ) = −0.2E
LMF( !ZE ) = 0.9(E +1)
LMF( !NΔE ) = −0.3ΔE
LMF( !ZΔE ) = 0.9(ΔE +1)

 

 

LMF( !NE ) = −0.2E
LMF( !ZE ) = 0.9(E +1)
LMF( !ZΔE ) = 0.9(1− ΔE)
LMF( !PΔE ) = 0.3ΔE

 

 

LMF( !ZE ) = 0.9(1− E)
LMF( !PE ) = 0.2E
LMF( !ZΔE ) = 0.9(1− ΔE)
LMF( !PΔE ) = 0.3ΔE

 

 

LMF( !ZE ) = 0.9(1− E)
LMF( !PE ) = 0.2E
LMF( !NΔE ) = −0.3ΔE
LMF( !ZΔE ) = 0.9(1+ ΔE)

 

Firing 
intervals 

 

!RZ
1

f 1 = E ⋅ ΔE
f 1 = 0.06E ⋅ ΔE

⎧
⎨
⎪

⎩⎪

!RZ
2

f 2 = −E ⋅(1+ ΔE)
f 2 = −0.18E ⋅(1+ ΔE)

⎧
⎨
⎪

⎩⎪

!RZ
4

f 4 = −(1+ E) ⋅ ΔE
f 4 = −0.27(1+ E) ⋅ ΔE

⎧
⎨
⎪

⎩⎪

!RZ
5

f 5 = (1+ E) ⋅(1+ ΔE)
f 5 = 0.81(1+ E) ⋅(1+ ΔE)

⎧
⎨
⎪

⎩⎪

 
 

!RZ
2

f 2 = −E ⋅(1− ΔE)
f 2 = −0.18E ⋅(1− ΔE)

⎧
⎨
⎪

⎩⎪

!RZ
3

f 3 = −E ⋅ ΔE
f 3 = −0.06E ⋅ ΔE

⎧
⎨
⎪

⎩⎪

!RZ
5

f 5 = (1+ E) ⋅(1− ΔE)
f 5 = 0.81(1+ E) ⋅(1− ΔE)

⎧
⎨
⎪

⎩⎪

!RZ
6

f 6 = (1+ E) ⋅ ΔE
f 6 = 0.27(1+ E) ⋅ ΔE

⎧
⎨
⎪

⎩⎪

 
 

!RZ
5

f 5 = (1− E) ⋅(1− ΔE)
f 5 = 0.81(1− E) ⋅(1− ΔE)

⎧
⎨
⎪

⎩⎪

!RZ
6

f 6 = (1− E) ⋅ ΔE
f 6 = 0.27(1− E) ⋅ ΔE

⎧
⎨
⎪

⎩⎪

!RZ
8

f 8 = E ⋅(1− ΔE)
f 8 = 0.18E ⋅(1− ΔE)

⎧
⎨
⎪

⎩⎪

!RZ
9

f 9 = E ⋅ ΔE
f 9 = 0.06E ⋅ ΔE

⎧
⎨
⎪

⎩⎪

 
 

!RZ
4

f 4 = −(1− E) ⋅ ΔE
f 4 = −0.27(1− E) ⋅ ΔE

⎧
⎨
⎪

⎩⎪

!RZ
5

f 5 = (1− E) ⋅(1+ ΔE)
f 5 = 0.81(1− E) ⋅(1+ ΔE)

⎧
⎨
⎪

⎩⎪

!RZ
7

f 7 = −E ⋅ ΔE
f 7 = −0.06E ⋅ ΔE

⎧
⎨
⎪

⎩⎪

!RZ
8

f 8 = E ⋅(1+ ΔE)
f 8 = 0.18E ⋅(1+ ΔE)

⎧
⎨
⎪

⎩⎪

 

 
• Ranges can be deduced from Fig. 8. 
• Rules can be created from Table VII. 

• UMFs and LMFs can be deduced from Fig. 8. 

• Firing intervals are for each region’s rules, and use the second line of (1) when: p = 2 , E  is  
!F1
l  

and ΔE  is  
!F2
l ; they also use the product t-norm.  
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Table SM-2: yl

COS and yr
COS  iterations in the four regions. If   yl

( j )    ( j ∈{0,1,...,4})  is the winner, then 

L = j,  and if   yr
(k )    (k ∈{0,1,...,4})  is the winner, then  R = k  (see Fig. 9) 

Region yl
COS  iterations yr

COS  iterations 
1 

yl
(0) =

− f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 yl

(1) =
− f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 yr

(0) = − f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 yr

(1) =
− f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 

yl
(2) =

− f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 yl

(3) = − f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 yr

(2) =
− f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 yr

(3) =
− f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 

yl
(4 ) = − f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 yr

(4 ) =
− f 1 − 0.5 f 2 − 0.5 f 4

f 1 + f 2 + f 4 + f 5
 

2 
yl
(0) =

−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 yl

(1) =
−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 yr

(0) = −0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 yr

(1) =
−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 

yl
(2) =

−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 yl

(3) =
−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 yr

(2) =
−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 yr

(3) =
−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 

yl
(4 ) = −0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 yr

(4 ) =
−0.5 f 2 + 0.5 f 6

f 2 + f 3 + f 5 + f 6
 

3 
yl
(0) =

0.5 f 6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 yl

(1) =
0.5 f 6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 yr

(0) = 0.5 f
6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 yr

(1) = 0.5 f
6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 

yl
(2) =

0.5 f 6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 yl

(3) =
0.5 f 6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 yr

(2) =
0.5 f 6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 yr

(3) =
0.5 f 6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 

yl
(4 ) = 0.5 f

6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 yr

(4 ) =
0.5 f 6 + 0.5 f 8 + f 9

f 5 + f 6 + f 8 + f 9
 

4 
yl
(0) =

−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 yl

(1) =
−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 yr

(0) = −0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 yr

(1) =
−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 

yl
(2) =

−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 yl

(3) =
−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 yr

(2) =
−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 y(3) =

−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 

yl
(4 ) = −0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 yr

(4 ) =
−0.5 f 4 + 0.5 f 8

f 4 + f 5 + f 7 + f 8
 

 
To obtain the formulas which are in this table: 

• yl
( j ) : Use (2), the numbering of the fired rules in each region (from Table SM-1), and the crisp rule 

consequents (see “Rules” in Table SM-1), which play the role of the  cl (
!Gi )  in (2). 

• yr
(k ) : Use (3), the numbering of the fired rules in each region (from Table SM-1), and the crisp 

rule consequents (see “Rules” in Table SM-1), which play the role of the  cr (
!Gi )  in (3). Note that 

because the rule consequents are crisp,  cr (
!Gi ) = cl ( !G

i ) .  
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III. Control Surfaces for IT2 FPID Controllers Designs 
 
 

 

 

  

  
Figure SM-1: Control surfaces for T1 FLC and the four IT2 FLCs (Mendel, 2017 [37, p. 606]; © 2017, Springer). “D” 
denotes defuzzification. The figures were generated, most graciously, by Prof. Tufan Kumbasar.  

 
 

Control surfaces for five FPID controllers are given in Fig. SM-1. The following is stated in [37, p. 695]: 
“Comparing the T1, COS TR + D, WM UB, NT and BMM control surfaces in this figure, a number of 
observations can be made: 

 
1. “The four adjacent end-points of the surfaces are the same, and it is only the ways in which the 

adjacent end-points are connected that are different. 
2. “The adjacent end-points of the T1 FLC surface are connected by straight lines. 
3. “The adjacent end-points of each of the four IT2 FLC surfaces are connected by curves, each one of 

which provides a different kind of interpolation between the adjacent end-points, and so it is in this 
sense that one may say that the IT2 FLC surfaces are smoother than the T1 FLC surface. 

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

E

Surface of the T1-FLC

_E

U

Surface of the T1 FLC 

 U

 E ΔE

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

E

Surface of the IT2-FLC-KM

_E

U

 U

 E ΔE

Surface of the IT2 Mamdani FLC: COS TR + D 

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

E

Surface of the IT2-FLC-WM

_E

U

 U

 E ΔE

Surface of the IT2 WM UB FLC 

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

E

Surface of the IT2-FLC-NT

_E

U

 U

 E ΔE

Surface of the IT2 NT FLC 

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

E

Surface of the IT2-FLC-BMM

_E

U

 U

 E ΔE

Surface of the IT2 BMM FLC 



 7 

4. “The IT2 Mamdani FLC: COS TR + D curves exhibit the most varying curvature, followed by 
either the IT2 WM UB FLC or the IT2 BMM FLC, whereas the IT2 NT FLC curves are the least 
varying. 

5. “The IT2 WM UB, NT and BMM adjacent end-point curves can also be interpreted as different 
ways to smooth out the more varying curvature of the IT2 Mamdani FLC: COS TR + D adjacent 
end-point curves.” 

 


